
Technical Report

~:\\ r~WUCMU/SEJ89TR-38) ESD-89-TR-47

Carnegie-MeIon University

- Software Engineering Institute

Comparative Evaluations of
Four Specification Methods
for Reel-Time Systems

A. David P. Wood
V WiIIIam G. Wood

December 11DTI* *ELECTE
MARI$5U

//I

4' /

'7 L

mod%.__ / \, 03 1 N 103 I
4.MR

•

udtl-4 A ~ -*4omvwI OIOVSM laold~m-po wewe lde'l lw Tle aawe mmwlb we f-wtfoook go

l Id fmb~crrw"mow O'c"Oom t wcd&Po~o m* W l~sm fttAMI

.0 - - -1@-. v PO so.,~vlom 0(0v-as" w"*MoonLNo Dw*- oIdW,,,vws~ tm o 0ft~v" el M.T48 XofWeficwvg "44Nwtc f WSCm 'K0t
In Ia CF4 Mlmdo mgdeefmom o wii@

-0 eo ,, -fi~ IWM stke , "m ow~o A mwo f w WW go cowe I* a "Kft mpswoo
- 4orov olol b eD~ s W P10WAColm"M60m Utvpwv SMF3

-W rwWs~ 11 W IM #WAP~fog PAIMM ~ (47) M

ECR CL.SSIF.CArON OF T~S PAGE

REPORT DOCUMENTATION PAGE

IREPORT SIECURITY CLASSIFICATION it, RESTRICTIVE NAA,(INGS

UNiCLAS SI FIED NONE
2&. SECURITY CLASSIFICATION AUTHORITY 3. OeSTRIOUTIONfAVAILA8ILiTY OF REPORT

N/IA APPROVED FOR PUBLIC RELEASE
2b. O4ECLASSIFICATION/OOWNGRAOING SCMEDULE DISTRIBUTION UNLIMITED

N/A__ _

A PERFORMING ORGANIZATION REPORT NUMSERIs) S. MONITORING ORGANIZATION REPORT NUMB6ER(S)

CMU/SEI-89-TR-36 ESD-TR-89-47

6&. NAME OF PERFORMING ORGANIZATION tLb OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION
I(if applicableP

SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. AOOAESS (City. Slate .,, ZIP Coda) 7b. ADDRESS (City. St.e .Rd ZIP Codat

CARNEGIE-MELLON UNIVERSIT-Y ESD/XRSI

PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANSCQM_ MA Q1731

B.NAME Of FUNOING/SPONSORING rfb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if apptlic"l)

SEI JOINT PROGRAM OFFICE ESD/XRSl F1962885CO003
Be- ADDRES3 (Cit7. Stat ed ZIP Caodal 10. SOURCE OF FUNDING mos.

CARNEGIE-MLLON UNVERSITY PROGRAM PROJECT TASK(WORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. No. NO. No.

1ll. TIT".. (Include Secunty CISIkGIIO.6 75FNINAI/

Comparative Evaluations of Four Specification.Methdfo Ra-TmSyts
17-. PERSONAL AUTHORIS)

David P. Wood William G. Wood
134 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day, 5S. PAGE COUNT

FTA. ROM _ TO December 1989 8~6 pp_
16. SUPPLEMENTARY NO0TATION

17. COSATICOBS IB& SUBJECT TERMS (Contiue onIf fn~w8l Indqflnay by block nIumberJ

FIELD GROUP SUB. GR. ESMI. Real-time
Harel specification methods
Hatley-Pirbhai Waro-Mellor

19. ABSTRACT lContue ,,an raw.,. Ifneawy ad idqn ify by bKoch rnum.ber#

A number of methods have been proposed in the last decade for the specification of system
and software requirements for time-critical systems. The emergin$ CASE technolopy is based
heavily on a subset of these methods', yet little objective attention has been paid to the
methods themselves. This report describes our objective evaluation of four methods (identi-
f ied as ESML, Harel, Hatley-Pirbhai, and Ward-Mellor) , f rom identif ication through detailed
assessment. We have avoided the use-of small sample problems as the sole basis of our
evaluation. We depart from this approach by involving software developers from various
application domains, including extended interviews of those who have applied the methods
tollarge-scale projects. The resulting recommendations and conclusions focus on method
select on criteria, and on the large-grained impact of using these methods on a given
project .
The primary audience of this report is the software development practitioner involved in
the method selection of adoption process. Thempa~ er attempts tocprovide proper context to
assist the practitioner in making appropriate method adoption decisions. Secondarily,
the results of the paper also should be of interest to tool vendors, method developers,
and program managers.

20. OISTROIBUTION/AVAILABILITY OP: ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCL^SSIFIEDUNLIMITED 9 SAME AS APT. 0 oTIC USERS (3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22&. NAME OP RESPONSIBLE INOIVIDUAL 72b TELEP*4ONE NUMBER 22c- OFFICE SYMBOL

KARL H. SHINGLER - 11clude Ame Code)

412 268-7630 SEI JPO
00 FORM 1473. 83 APR FEDITION OP I 'AN 7-3 IS OBSOLETE.

SECURITrY CLASS.F CATION OF T.llS P&,

Technical Report
CMU/SEI-89-TR-36

ESD-89-TR-47
December 1989

Comparative Evaluations of
Four Specification Methods

for Real-Time Systems

David P. Wood

William G. Wood
Specification and Design Methods

and Tools Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright ;. 1990 by Carnege Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and their contractors To obtain a copy. please contact DTIC directly: Defense Technical Information
Cenler Attn FDRA, Cameron Station. Alexandria. VA 22304-6145

Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly National Technical Information Service, U S Department of Commerce, Springfield, VA 22161

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Preface 1

1. Executive Overview 1

2. Introduction 5

2.1. Target Audience and Alternative Sources 5

2.2. Background 5

2.3. Purpose and Scope 6

2.4. Approach and Report Structure 6

2.5. Key Terminology 7

3. Method Identification 11
3.1. Literature Search 11
3.2. Affiliates Survey 11

3.3. Selection of Methods for Classification and Assessment 12

4. Method Classifications 13
4.1. Top-Level Classification 13
4.2. Forms of Representation - Functional 14
4.3. Forms of Representation - Structural 16
4.4. Forms of Representation - Behavioral 18

5. Method Assessment 23
5.1. Assessment Approach 23
5.2. Summary of Sample Problems 23
5.3. Summary of Project Interviews 24
5.4. Summary of Evaluation Questions and Answers 26

6. Recommendations 29

6.1. General Observations 29
6.2. Recommendations to Software Developers 30
6.3. Recommendations to Tool Vendors 33
6.4. Recommendations to Method Developers 33
6.5. Recommendations to Program Offices 34

7. Conclusions 37

Appendix A. Special Topics 39
A.a. Brief History of the Subject Methods 39
A.b. Appropriateness of Specification Phase 40
A.c. Formal Methods 40
A.d. Object-Oriented Development 41

CMU/SEI-89-TR-36 I

A.e. The Relationship of Methods and Tools 41

Appendix B. Affiliates Survey Results 43

Appendix C. Evaluation Questions and Answers 47
C.a. System Characteristics 47
C.b. Constraints 53
C.c. Representations 54
C.d. Deriving Representations 58
C.e. Examining Representations 59
C.f. Management Characteristics 61
C.g. Other Issues 63

Appendix D. Comments From Methodologists 67
D.a. ESML 67
D.b. Harel 68
D.c. Hatley and Pirbhai 69
D.d. Ward and Melior 70

Appendix E. Glossary 71

Bibliography 75

CMU/SEI-89-TR-36

List of Figures

Figure 4-1: Chart 1: Top-Level Classification 15
Figure 4-2: Chart 2: Functional Representations 17
Figure 4-3: Chart 3: Structural Representations 19
Figure 4-4: Chart 4: Behavioral Representations 21

AaoesilOU POP

XTIS MR&I
DTIC TAB 1
Unamomood
:ust irioation-

Distribution

Availability 004
ri~vel' and/or

idiot Speelal

CMU/SEI-89-TR-36 iIl

Preface

Which methods and tools are the best? is a question frequently heard at meetings, con-
ferences, and symposia for software engineering, software development methods,
Computer-Aided Software Engineering (CASE), and other activities related to software tech-
nology. The question begs a simple, straightforward answer, but is often given subjective,
erroneous, or misleading treatment.

How may we provide an answer to this critical question? What knowledge must we have at
our disposal? What analyses must we perform? To begin, consider the following issues:

" Identifying the best toolset might require knowledge of the best methodology.

" Identifying the best methodology might require knowledge of the best life-cycle
strategy.

" Identifying the best life-cycle strategy might require knowledge of the best
methods for each phase.

" Identifying the best methods might require knowledge of the best paradigms for
specification, design, verification, and so on.

" Identifying the best paradigms might be highly dependent on the application
domain.

There is little agreement to be found in any of the above issues. In addition, the relation-
ships between these and other issues can be circular: knowledge of A requires knowledge
of B which requires knowledge of A. Further, definitive answers can be derived only from
comprehensive research. Declaring x the best toolset and 'Y the best method is meaning-
less if one has evaluated only a few methods and tools from an inventory of many hundreds,
an inventory whose boundaries are vague, poorly defined, and continually evolving.

Which methods and tools are the best? Answering this question definitively requires mean-
ingful metrics and controlled experimentation, neither of which appears within the grasp of
existing resources or technology. This report does not intend to provide definitive answers
to the question. Rather, our focus is necessarily humble: we examine a small subset of
methods related to one part of the development life-cycle. Through this report, we hope to
assist each organization in asking the right questions and in developing a series of workable
answers.

Comparative Evaluations of
Four Specification Methods

for Real-Time Systems

Abstract: A number of methods have been proposed in the last decade for the
specification of system and software requirements for time-critical systems. The
emerging CASE technology is based heavily on a subset of these methods; yet
little objective attention has been paid to the methods themselves. This report
describes our objective evaluation of four methods (identified as ESML, Harel,
Hatley-Pirbhai, and Ward-Mello), from identification through detailed assessment.
We have avoided the use of small sample problems as the sole basis of our eval-
uation. We depart from this approach by involving software developers from
various application domains, including extended interviews of those who have ap-
plied the methods to large-scale projects. The resulting recommendations and
conclusions focus on method selection criteria, and on the large-grained impact of
using these methods on a given project.

The primary audience of this report is the software development practitioner in-
volved in the method selection or adoption process. The paper attempts to pro-
vide proper context to assist the practitioner in making appropriate method adop-
tion decisions. Secondarily, the results of the paper also should be of interest to
tool vendors, method developers, and program managers.

1. Executive Overview
The Software Engineering Institute (SEI) Methods and Tools Project completed an investi-
gation of software development methods that has resulted in a comparative evaluation of
several methods for the specification of system and software requirements of time-critical
systems. The methods investigated were ESML, Harel, Hatley-Pirbhai, and Ward-Mellor.
These methods were selected because they reflect the current "state of the practice," in that
they have a track-record in industry that can be examined, they have a solid technical basis,
and they form the foundation of a large proportion of the emerging front-end CASE tech-
nology. We expect evaluation of these methods to provide a more significant point of lever-
age than would evaluations of less mature, more experimental technologies. In other words,
software houses and program offices can use these evaluations today.

We followed an approach that began with a literature search and a survey of SEI affiliates in
industry, academia, and the military. To ensure technical accuracy, we invited the partici-
pation of the developers of the selected methods in providing comments, suggestions, and
critical reviews. To establish a basic understanding of the methods, we solved a number of
sample problems using each method. To ensure the applicability of our results to large-
scale, complex, real-world applications, we included the experiences of users of the meth-
ods as a fundamental input into the evaluation process. As a result, we believe that our
recommendations retlect the actual operating conditions under which methods such as
these are commonly used.

CMU/SEI-89-TR-36 1

Using the information from actual users, the developers of the methods, and our own inter-
nal investigations, we applied the data to a predetermined series of evaluative questions
established in the SEI technical report A Guide to the Assessment of Software Development
Methods [Wood88]. The answers to these questions were then distilled into a set of obser-
vations and recommendations targeted primarily to practitioners involved in method selec-
tion and adoption, and secondarily to tool vendors, method developers, and program offices.
The observations and recommendations are detailed in Chapter 6 of this report and sum-
marized below:

" These methods have been used successfully, but there are prerequisites for
success. All of the failures that we observed, and the bulk of the difficulties,
were attributable to problems in management, training, and tools. Relatively
few problems were attributable to the methods themselves.

* There are few significant discriminating factors that can be used to denote any
method as "the best"; however, important discriminating factors are presented
to assist selection on a project- or program-specific basis. Key discriminators
include compatibility with process and life-cycle goals, tool capabilities, availa-
bility of training and method expertise, and the personal experiences of project
members and technical leaders.

" These methods do not solve the essential difficulties of software development
[Brooks87], but, used effectively, they permit developers to concentrate their

attentions on those essential aspects. It is probably unrealistic to expect any
method to solve the essential difficulties of software development.

" Improving current practice will provide better leverage than switching from one
of these methods to another. Probably the most significant factor in the repeat-
able success of a software contractor is an evolving software process
[Humphrey87], including evolving methods, tools, and environments. By con-

trast, continually jumping from one method to another is more likely to result in
project disruption than in demonstrable improvements.

" Investment of resources in method and tool selection activities, up-front train-
ing, ongoing consultation, and development of problem workarounds is neces-
sary and should be anticipated. Contractors and program offices should plan
for such investment early in the acquisition process.

" Beware of method and tool hype. Practitioners should be cautious of claims of
"best" methods, methodologies, tools, and environments, remembering that sig-
nificant evidence of causal relationships, not to mention meaningful metrics, is
essentially nonexistent. At best, educated guesses can be provided as
guidance. At worst, the hyperbole cin be seriously misleading. The best de-
fense against being overwhelmed by an overload of information is to take an
evolutionary rather than revolutionary approach to method and tool adoption.

* Tool vendors should concentrate on improving support for the subject methods,
in preference to adding trendy features. They should also focus on flexibility,
interoperability, and other development environment issues.

" Method developers should provide tool vendors with detailed requirements for
appropriate support of their methods. They should also focus on the issues of
transition to other software development notations, and on effective mainte-
nance of their own artifacts.

2 CMU/SEI-89-TR.36

* Program offices should require contractors to exhibit an evolving software proc-
ess, including methods, tools, and environments. Where multiple contractors
are involved in the development of the system, care should be taken to ensure
method compatibility among contractors.

Chapter 6 presents a set of important criteria for discriminating among these methods that
must be applied on a project- or program-specific basis. Also presented is an additional set
of discriminating factors that permit distinctions among the methods on a more general level.
In particular, the quality of available texts, the overall simplicity of notations, and the support
of system design issues are discussed. Where program-specific factors are deemed to be
equal, we lean toward the Hatley-Pirbhai and Harel methods (amo. c those that were
evaluated) based on some of the latter distinctions. Our reasoning is described in detail
within this report.

With these recommendations, program managers, project leaders, and engineers can ex-
press rational preferences among these methods. These preferences then can be weighed
against preferences in tools and environments in making appropriate trade-off decisions.

CMU/SEI-89-TR-36 3

CMU/SEI-89-TR-36

2. Introduction

2.1. Target Audience and Alternative Sources

The primary audience of this report is the software development practitioner. The report
attempts to provide proper context to assist the practitioner in making appropriate method
adoption decisions for real-time system specification methods. The report is also targeted to
method developers and tool vendors interested in the perspective of large-scale users of the
methods and to program offices that are attempting to upgrade the technology base of their
contractors.

We evaluate and discuss only a few methods in this report. For the reader interested in
more general information on a wide variety of methods, we have found the Software Meth-
odology Catalog ([CECOM89]) to be an excellent reference.

This report focuses mostly on the large-grained impact of method adoption rather than
small-grained details. For those interested in a detailed technical dissection of the many
interesting semantic issues of these and other methods, we recommend A Pragmatic For-
mal Method for Computer System Definition by Stephanie White ([White87]) as a good
source of information.

Based on the nature of these methods, we felt that providing trivial examples of graphical
nozations would be inappropriate and distracting. The notations of these methods should be
viewed in the larger context of an entire model or, ideally, of a large-scale application.
Therefore, we have not included graphic examples but instead recommend that the reader
refer to method-specific literature for illustration, such as [Harel87], [Harel88b], [Ward85],
[Bruyn88], and [Hatley87].

2.2. Background

It is generally recognized that new technologies are accepted by industry at a sluggish pace
[Jenson88l. Slow technology transition can be attributed to any number of factors: the tech-
nology may be inadequate; it may be substantially different from existing technology; it may
be lacking in documentation and expertise; there may be many competing technologies of
apparently equal capability; there may be a lack of perception for the need for such tech-
nology; or there may be many political or economic hurdles to be overcome. In the case of
techniques for the specification of system and software requirements, any or all of these
factors are significant.

Discussion of specification techniques is generally mired in confusion. The topic is polariz-

ing, resulting in many heated debates over such questions as:

" What is the difference between specification and design?
" What is the difference between system and software requirements?

CMU/SEI-89-TR-36 5

* What are the significant differences between specification of a real-time system
and one that is not real-time?

" Should a specification be rigidly formal or not?

* Should a specification be object oriented, functionally oriented, or data-
oriented?

The difficulty in answering these and other polarizing questions is compounded by the rela-
tively muddled state of the technology, exemplified by:

" Sorting through confusing and conflicting terminology

" Comprehending the difference between methods, CASE, and environments
* Differentiating between CASE/method hype and reality
* Understanding the role of software process and management issues

More than anything else, these questions and topics illustrate the relative immaturity of the
technology. Unfortunately, software engineering practitioners generally do not have the
resources or inclination to ponder such matters. What they wish to know is Which methods
and tools are the best? Although definitive proof does not exist, we must answer as best as
we can based on available literature and experience.

2.3. Purpose and Scope

The purpose of this report is to help the practitioner wade through at least some of the
relevant questions in order to reach a rational decision on method selection. The purpose is
not to evaluate automated tools, life-cycle models, or documentation standards, nor is it to
attempt to evaluate methods across the life-cycle. Each of these represent important topics,
but are outside the scope of this effort.

Rather than attempt a broad-based compendium of (necessarily high-level) method descrip-
tions, we have chosen to focus on a very limited subset of methods for examination. In
particular, our focus for this report is on methods for system and software specification for
real-time systems. Our process for the identification of methods that meet the above criteria
is described in greater detail in Chapter 3 of this report. Brief discussions of several related
topics are provided for completeness in Appendix A.

2.4. Approach and Report Structure

The goal of these evaluations is to provide specific, objective, and substantiated recommen-
dations pertaining to the selection of specification techniques. Our approach has been
based loosely on two reports published previously, [Firth87] and [Wood88], which detail cri-
teria for method classification, assessment, and selection.

The structure of this report parallels the steps of our approach:

6 CMU/SEI°89-TR-36

1. Identification - A literature search and a survey of SEI affiliates were used to
produce a comprehensive list of methods and to provide a basis for the selec-
tion of methods for detailed evaluation. This process is described in Chapter 3
of this report.

2. Classification - Each of the selected methods was briefly analyzed and clas-
sified in accordance with the taxonomy of [Firth87]. This process is described
in detail in Chapter 4 of this report.

3. Assessment - Each of the selected methods was analyzed in greater detail in
accordance with the criteria of [Wood88]. Selected sample problems were
used for an initial assessment, while interviews of actual users of the methods
and examination of some of their resulting specifications provided substanti-
ation for the final assessment. This process is described in Chapter 5 of this
report.

4. Recommendations - Chapter 6 provides observations and recommendations
drawn from the results of the above procedure.

5. Conclusions - Chapter 7 discusses the overall conclusions arising from this
evaluation task.

In addition, four appendices are provided for reference to the reader:

Appendix A (Special Topics) presents a forum for the discussion of important topics that are
relevant to this report but are outside of its scope. With this section, we have attempted to
anticipate closely related issues that likely would be raised in the minds of readers, and to
discuss them in brief.

Appendix B (Affiliates Survey Results) describes the results of the survey of SEI affiliates
conducted for this project. A concise summary of the survey is provided in Section 3.2.

Appendix C (Evaluation Questions and Answers) provides the evaluation questions and an-
swers that were used as input to our final recommendations.

Appendix D (Comments From Methodologists) provides brief critiques of this report from the
principle developers of the methods. In an attempt to be as fair as possible, representatives
of each method were given the opportunity to comment on the conclusions of the report.

Appendix E (Glossary) defines terms used throughout this report. Several particularly im-
portant or controversial terms are also discussed in Section 2.5.

2.5. Key Terminology
Throughout the field of software engineering, as in other immature fields, inconsistent termi-
nology plagues the open exchange of ideas. In some cases, multiple terms have been intro-
duced to describe a single concept; in other cases, very different concepts are denoted by
the same term; in yet other cases, new terminology and buzzwords seem to be introduced
for no valid reason. The purpose of this section is to define key terms (presented in bold)
that we will use throughout this report. These terms are also defined in a glossary in Appen-
dix E.

CMU/SEI-89-TR-36 7

The key terms of this report fall into three areas: methods and tools, specification processes
and products, and real-time systems.

Methods and Tools
We use the term method to refer to an approach to solving a particular problem. A true

method, in our view, is one that provides both a set of notations and a set of techniques.
The notation is some combination of graphical, textual, or tabular languages used to de-

scribe the solution to the problem at hand. Notations can range in levels of formality from
free-form text to algebraically correct statements. The associated set of techniques permits
the user of the method to derive and examine a solution based on the notation. The tech-
niques can be provided at varying levels of specificity ranging from loose guidelines to de-
tailed procedures or even algorithms. The possible range of derivation techniques and ex-
amination techniques for a method can be closely related to the formality of the notations.
For example, thorough dynamic analysis requires a notation with well-defined, formal, be-
havioral syntax and semantics. We will use the term method rather loosely, to refer to any

approach providing some combination of notations and techniques.

The term methodology is often used interchangeably with method, although recent litera-
ture tends to scorn such use as misleading and incorrect. There are two correct definitions
[Webster85] of methodology: (1) a set of methods integrated to achieve an overall goal; and

(2) the study of methods. In general, we avoid the term. Where we use it, we use the first
definition, as should be obvious from context.

The term tool, in the context of software development, usually refers to a product for the
automation of some method, part of a method, or set of methods. The term CASE
(Computer Aided Software Engineering) in its most general use, refers to any automated
software development tool (e.g., compilers, text editors, or debuggers). In common practice
the term often takes on a more constrained meaning, referring to workstation-based tools
that support graphics-based specification and design methods.

Whereas a tool can be thought of as supporting a single method, a toolset can be consid-
ered to support a methodology as defined previously. A toolset usually consists of some
group of tools exhibiting some level of integration. A software development environment
implies a somewhat more comprehensive toolset, one that might support areas such as
project management or configuration management in addition to technical development acti-
vities.

Please refer to Appendix A for a continued discussion of automated support of methods.

Specification Processes and Products
The terminology of this area seems to be the cause of considerable confusion. As such, we

advise that you consider our definitions carefully before proceeding to the heart of the re-
port.

8 CMU/SEI-89-TR-36

The requirement is a description of what the customer and end-user view as their needs for

the system. Often mislabeled as functional requirements, the requirements description is
frequently an eclectic mix of functional requirements (such as a scheduling mechanism) and
other types of requirements (such as dynamic behavior or ease of installation), together with
customer-imposed design constraints.

Specification, requirements specification, requirements analysis, and requirements defini-
tion all refer to essentially the same part of the software development life-cycle: the process
of examining user requirements and their subsequent capture into a more formal represen-
tation. These terms are typically used interchangeably. Often, specification is used to refer
to the end product of the process, whereas analysis is used to refer to the process itself.
1 Note, however, that specification can refer to the process itself, as well as the end prod-
uct. In keeping with previous SEI reports, we use the term specification to refer to both the
process of analysis and the resulting product.

In many circles, particularly those involved in the real-time, large-scale, embedded systems
domains, there is a clear distinction made between system requirements specification
and software requirements specification. A system may include software, hardware,
human, or other components. Further, a given system may be a component of a larger
system. System requirements specification, then, refers to the analysis of the requirements
of an entire system that is to be developed. Software requirements specification refers to
the analysis of the software component(s) of the system. The notations and techniques
used in both types of specification may be the same; in some scenarios, the software speci-
fication is an elaboration and refinement of part of the system specification.

In proceeding from system requirements to software requirements, a system design is of-
ten needed. The system design (sometimes called the system architecture) defines the
partitioning of the system into various hardware, software, and other components, the allo-
cation of requirements to each component, and the interfaces among components. This
allocation is based on any number of trade-off factors. Please note that system design is
not to be confused with software design.

To clarify, this report uses the following terms as defined:

" System requirements specification - the process and product of the analysis
of system requirements.

" System design - the process and product of defining the division of the system
into hardware, software, and other components, the allocation of requirements
into each of these components, and the detailed description of physical inter-
faces between the components.

" Software requirements specification - the process and product of the anal-
ysis of the software requirements.

'There is a correspondence between this view and our defined components of a method: analysis cor-
responds to the exercise of a set of techniques, while the specification corresponds to an ordered use of the
notation

CMU/SEI-89-TR-36

*Specification - the combination of system requirements specification, system
design, and software requirements specification.

Please note that we do not endorse a particular life-cycle model, and the definitions used
above should not be construed as such. However, system requirements specification, sys-
tem design, software requirements specification, and software design exist in one form or
another in virtually all life-cycle models. For example, most modern models provide for ex-
tensive iteration and feedback between phases, resulting in somewhat fuzzy phase bound-
aries. A method that is to be useful to a wide audience should provide sufficient flexibility to
be adaptable to multiple models.

Real-Time Systems
We have also stated that our intent here is to focus on specification methods appropriate to
real-time systems. Real-time systems deal with the processing of data by a computer in
connection with another process outside the computer according to time requirements im-
posed by the outside process [IEEE83]. "Real-time systems typically sense and control ex-
ternal devices, respond to external events, and share processing time between multiple
tasks. Processing demands are both cyclic and event driven in nature [Fairley85]." There-
fore, a method applicable to real-time systems specification is one that, as a minimum, is
capable of capturing both functional processing requirements and event-based behavioral
requirements imposed upon the functional requirements.

10 CMU/SEI-89-TR-36

3. Method Identification
Based on our general knowledge of trends and developments in specification methods tech-
nology, our initial intention was to examine, as a minimum, the techniques of Ward-Mellor
[Ward85], [Ward86], Hatley-Pirbhai[Hatley87], and Harel [Harel88b], [Harel89]. Our per-

ception was that these techniques were relatively well understood, and gaining in accep-
tance and use. This latter was a critical factor for us, as it was our intention to examine
actual field use of these techniques as much as practical.

To be assured that our selection was a rational one, we performed a literature search and a
survey of SEI affiliates to give us a rough idea of the present state of the practice.

3.1. Literature Search
A literature search was conducted with the purpose of producing a comprehensive (though
not exhaustive) list of proposed specification and design methods, to gain a nominal under-
standing of each method, and to gather pointers to further, detailed literature for those meth-
ods selected for evaluation.

We identified slightly over 100 methods, and categorized a subset as semi-formal specifi-
cation methods. Among the subset, the most heavily debated methods were:

" Structured Analysis and variants (including Ward-Mellor, Hatley-Pirbhai and
Hare/)

" Jackson System Development (JSD) ([Jackson83])

" System Requirements Engineering Methodology (SREM) ([Alford77])

3.2. Affiliates Survey
In September 1988, a questionnaire was distributed to all affiliate organizations of the SEI
and to attendees at the 1988 SEI Affiiiates Symposium. The primary purpose of the ques-
tionnaire was to identify the methods of most interest to our affiliates. A total of 447 ques-
tionnaires were distributed.

The questionnaire was brief, consisting of only five questions intended to determine the
breadth of real-time application domains faced by our affiliates, the requirements specifi-
cation methods used for those applications, the design methods used, and the programming
languages used. A final question requested aid in the identification of suitable application
domain sample problems to make method evaluations more meaningful.

The responses to the questionnaire are provided in Appendix B of this report. Several con-
clusions may be drawn from the results of the survey:

CMU/SEI-89-TR-36 11

1. The respondents represented a broad variety of real-time application domains.

2. Taken together, the methods that we chose to examine (Harel, Ward-Mellor,
and Hatley-Pirbhai) are the dominant specification techniques of those who
use methods; however, an object-oriented analysis method seems to be de-
sired.

3. Structured Design and object-oriented design strongly dominate the area of
design methods. No other methods are close to these two.

4. Ada is the dominant programming language for the questionnaire respon-
dents, although C and FORTRAN enjoy substantial followings as well.

5. Many affiliates expressed willingness to participate further in this study to as-
sist us in examining methods use in the field.

3.3. Selection of Methods for Classification and Assessment

As discussed previously, our initial intent was to evaluate the Ward-Mellor, Hatley-Pirbhai,
and Harel methods. The purpose of the affiliates survey and literature search was to con-
firm that our intentions were rational and would be potentially useful to the software engi-
neering community. The results of the literature search support our initial selection, al-
though a number of other methods (e.g., JSD and SREM) might be useful for future evalu-
ation. The responses from our survey of affiliates also tend to support our initial selection.
In addition, the results seem to indicate that future investigation of the emerging object-
oriented analysis and transformation techniques will be a worthwhile endeavor.

Having justified our initial selection, we elected to look at two other methods as well, due to
their obvious similarities to the other three methods: Extended Systems Modeling Language
(ESML) and Systems Engineering Methodology (SEM) (see [Bruyn88] and [Wallace87],
respectively).

While ESML ;s not strictly a method by our definition (it includes only a set of notations), its
dcv?'opers have selected attributes of the Hatley-Pirbhai and Ward-Mellor methods in deriv-
ing the ESML notation. In addition, the derivation techniques applicable to the other meth-
ods may be applied to ESML to make it a complete method.

SEM is a method derived from a combination of the Structured Analysis and Design Tech-
nique (SADT) and the Software Cost Reduction (SCR) methods, together with notations for
behavioral modeling. We felt it worthwhile to include SEM in our classifications (Chapter 4)
because of its similarity to the other techniques and because of its greater level of formalism
in some aspects of notation. However, we have not included it in the evaluations (Chapter
5) due to a lack of data from actual users and applications of the method.

12 CMU/SEI-89-TR-36

4. Method Classifications

Prior to a full-scale assessment, the methods identified in the previous section were clas-
sified according to a non-evaluative taxonomy based on that of [Firth87j. The
[Firth87] matrix categorized methods into three development phases (specification, design,

and implementation) and three forms of representation (functional, structural, and
behavioral). Although this scheme is useful for general classifications, it provides only
limited information when a more specific classification is desired. The classification scheme
used in this report represents both a reduction and an expansion of the original matrix that
facilitates the side-by-side comparison of multiple methods.

The classifications comprise four charts. The first chart provides a high-level outline of the
characteristics of each of the five methods. An evaluator can determine quickly where the
similarities lie (e.g., development phase coverage, functional and behavioral view
philosophy), as well as the differences (e.g., notational forms and structural views). This
allows the evaluator to focus energy on assessing those areas that are most likely to be
discriminating factors in the selection of a method. In that light, we have further classified
the representational notations of the five methods to an additional level of detail: Chart 2
classifies functional representations, Chart 3 classifies structural representations, and Chart
4 classifies behavioral representations.

It should be noted that classifications such as these are intended only to categorize methods
as an initial filter in the selection process. Such classifications tell us very little about the
quality of a particular method, its suitability to a given application, or the level or quality of
automation in terms of tool support. Such matters are certainly important in the final selec-
tion of methods, but are beyond the scope of classifications such as these.

The following sections present each of the four tables with brief supporting discussion.

4.1. Top-Level Classification

The top-level classification (Chart 1) makes clear the many similarities of the five methods.
Each method addresses primarily the same development phase, and has an integrated
functional/behavioral modeling approach incorporating data flow and finite state concepts.
The chart also indicates that only Harel, Hatley-Pirbhai, and Ward-Mellor provide some no-
tion of structural representations. SEM mentions the need for a "physical perspective," but
does not elaborate further.

Other potentially important differences include the level of dynamic analysis supported by
the methods (particularly emphasized in the case of Harel); the extent of derivation tech-
niques provided by the methods (Harel provides very few guidelines, while ESML provides
only a language).

CMU/SEI-89-TR-36 13

4.2. Forms of Representation - Functional

Chart 2 elaborates on the representation of functional requirements. Note that all of the
methods provide a specific functional view although each method uses a different name for
essentially the same (data-flow) concepts. Activity Charts, Data Flow Diagrams, and Ac-
tigrams are essentially identical. This diversity in terminology is typical and can lead to con-
fusion. In these cases, the reader should refer to the top-level chart for common termi-
nology.

One difference of note is the format of primitive functional specifications. Only one of the
methods, SEM, requires the use of a specific formal notation. This notation is based on the
NRL Software Cost Reduction (SCR) notation [Heninger8O]. The other methods allow the
use of a formal notation, but more typically incorporate some combination of structured
English, decision tables, or other semi-formal specification.

14 CMU/SEI-89-TR-36

0 -

- 0 -.-

t: O

(D 0 0

0 a 0 0
CL) M o)

--

- 0 >
(30 ~ CD0 0 0* . 0

C 0 - a

-~C ,, EZ EE * -

V 0.~ LL Ol CIP a)

Cz

W
-

Cz .2 E
D 0 in 0 _

0 "- S .
E3 E E mE't TC

FlgurW 4-I Char I:!pve lsifcto

CMU/SEu-89-TR-3u 15
= U)

0.- Cu

0Q
.00 0 C

.o .2 M
CD m .0 (3

Cc(0 ~ 0 U) , Do ~~ ~ LL- ~ .

E/ CL

CD

0 0 02

.2 (3 .2
01 (3 X3

0 2. 0 Z:0 (U

_) CD

zS

_ 0 0

0~

Flgure 4-1: Chart 1: Top-Level Classification

CMU/SEI-89-TR-36 1

4.3. Forms of Representation - Structural

Chart 3 elaborates on the representations of the structural requirements. In this category,
we include both system architecture and data architecture modeling. This convention is in
keeping with previous SEI reports, although for the remainder of this report, we will treat the
issues separately. There are two important differences that stand out in this chart. First,
Harel and Hatley-Pirbhai provide the necessary notations for capturing system architecture
while the other methods do not provide a distinct rotation. As discussed elsewhere in this
report, Ward-Mellor implementation models may be used in a similar fashion in many cir-
cumstances. Second, Ward-Mellor and SEM specifically include entity-relationship diagram
notations in their methods to support complex data modeling. Hatley-Pirbhai suggests the
same approach, but does not elaborate. All of the methods provide a data repository mech-
anism.

16 CMU/SEI-89-TR-36

C C -C

.0 .2
E 3: Vn 0

(UU

(D 20jL 0~ 0 0. P-L

70
0;

C C . C00 0 C
.2 0

4. L(U U(U C-

Czl

.0 0

U) 0. 00 0
.0 C: .

0 d :2 (U

E2 2 E o -2
(U Qo E. m 0), 3

C (D (.
0 0- c-D =.

0U 0 0 0

CC (D 10(0
0 CD. ,. M. 0~8

Q - 0)- u.2(

(0 0 0 Im CDcc

U 0~ a- 0 0 0unC . L

CLC

UU 0

~~ 0<0
.0 V; R

U (t - '

F~~~gure~~0 4t2 ChrE:Fntoa ersnain

CMU/2SEI08 5TR3 6L17

4.4. Forms of Representation - Behavioral

Chart 4 elaborates on the representations of the behavioral requirements. As with the func-
tional view, each method uses a different name for essentially the same purpose: the
modeling of system behavior. In contrast, however, the mechanisms used for the behavioral
modeling are dramatically different. In particular, although each method uses some form of
finite state machine representation, the methods differ in notation and emphasis. Harel uses
a unique hierarchical diagramming technique called statecharts; Ward-Mellor emphasizes
conventional, state-transition diagrams but also supports some tabular formats;
Hatley-Pirbhai emphasizes multiple tabular formats but also supports conventional state-
transition diagrams and combined formats; and ESML and SEM use some mixture of
diagrams and tables.

18 CMU/SEI-89-TR-36

CU
C
0

.2

CU

LU 0

*0 E

o ~E 0

00

E

Cl) -

0: In CD

-0 (1 cc -

0O 0 (
0 cr) 3: L) cc0 LU 0

Cfl

E cE CX CL
-c c(Ur c 0) .0 !2t

C-U C..(C(-C. In

c 5 U LU

0 C I E

(.)0 E) m(f 5 2 m

0- -. 2 0o--. 0 CD
I 0 <L2 <0U 4<U uE CC 0 0C-,-

U) E .0

0

CmV

c 0 U .2(U

C~

2 2 0 .2
3 :3

-- C

0 -u 40

Z< Em~ E~-
;.- .5. t= 0 0 . ~

Figure 4-3: Chart 3: Structural Representations

CMU/SEI-89-TR-36 19

20 CMU 'SEI-89-TR-36

Pc
0

0 0

C-u ooo. 0 0

C U)

W UC) 00Om ~

o C5
E

,z C13

0 E
>.>

13 0.0

0 0 -E

-9 6 Z E 20 U- m CD)_' CD

0 -_3 (n U)o om'_

C.- × C <oo -

o, " o O DC CuD 0. CC o"

--- LDC '

o . 0 -. 0

0.

_ _ E CD
U 6 E1 c

Eu 00 a-. 00 :C m X0
mI 0 00 00 0 D DxC

oIL

0~0

Cu 0 -0 Q -

-~. 0(~ C
Z. = r r 5

0 0.: -

<o CL CL

U)L Dc ()CZc LL c 0 CLU) (

--- -- -- ------

Figure 4-4: Chart 4: Behavioral Representations

CMU/SEI-89-TR-36 21

22 CMU/SEI-89-TR-36

5. Method Assessment

The following sections describe the detailed assessments of four of the five methods clas-
sified in the preceding section. The fifth, SEM, was included in the classifications due to its
philosophical similarity to the other methods, and because we feel that its use of a formal
notation for functional specification potentially is an important contribution. However, be-
cause of a lack of available information on actual applications of the method on a large
scale, SEM was not assessed and is not included in this section. SEM is sufficiently diver-
gent in heritage from the other methods that we did not feel confident in extending the con-

clusions from the other methods to SEM.

5.1. Assessment Approach

Several comparative or evaluative efforts exist in available literature ([Bergland8l],
[Blank83], [Davis88], [DOD82], [Floyd86], [Griffiths78], [Kelley87], [Lefkovitz82],
[Mannino87], [Peters77], [STARTS87], [Ward89a], [White87]); however, few of them are

supported adequately by data gathered from the field on real-world applications. For this
reason, we have taken an assessment approach that includes the examination of actual
field experience in this report. The evaluation process is outlined below.

1. Gain basic internal expertise in the syntax, semantics, and application of the
methods. This process is discussed briefly in Section 5.2.

2. Interview developers of actual applications that use the methods. Results
from this effort are summarized in Section 5.3.

3. Apply knowledge gained from the preceding steps to detailed evaluation ques-
tions from [Wood88]. Answers to these questions are provided in Appendix C.

4. Summarize evaluation results into broad categories to provide flexible method
selection data. This summary is provided in Section 5.4.

The results of this assessment process form the basis for the recommendations and conclu-
sions provided in Chapters 6 and 7.

5.2. Summary of Sample Problems
A set of sample problems were solved using each method, with a goal of establishing a
nominal syntactic and semantic expertise in each method. It was hoped that the sample
problems would provide significant input to the evaluation process.

The sample problems were small enough in size to be solvable given our resource con-
straints, yet complex enough to exercise some of the critical components of each method.
The problems solved include a sonobuoy system (borrowed from [SPS88]), a "generic
avionics" system (borrowed from [IBM88]), and an elevator system. Each problem empha-
sized a different processing aspect: the sonobuoy problem allowed modeling of system ar-
chitecture properties, the avionics problem allowed modeling of typical data transformation

CMU/SEI-89-TR-36 23

properties, and the elevator problem allowed modeling of state behavior and concurrent
properties.

A subset of sample problem solutions was reviewed by the developers of the methods to
ensure the correctness of our solutions. Feedback received from the method developers
has been incorporated in our evaluations.

For the most part, the sample problem exercises did not result In large-grained, dis-
criminating data for evaluation. During the process of solving the sample problems, it
became clear that the types of issues highlighted by the exercises were small-grained in
nature. We are convinced that the identification of large-grained issues requires more than
the relatively small effort (approximately one person-month per exercise) involved in the
sample problems. In other words, these methods are similar enough that making a selec-
tion based on small sample problems is almost arbitrary, and largely a matter of personal
preference. Although the small-grained differences (such as semantic conventions) are in-
teresting and important, they are far outweighed by the large-grained issues discussed else-
where in this report.

Initially, we anticipated that this report would focus on the comparison of the many small-
grained differences among the methods, but for the reasons stated above, we have elected
to not discuss small-grained issues in great detail. The remainder of the report, and partic-
ularly the resulting observations and recommendations, focuses almost entirely on large-
grained issues.

5.3. Summary of Project Interviews
While solving small sample problems is useful for determining some of the technical dif-
ferences among the methods and for exercising semantics of the methods, it is necessary to
investigate larger scale applications to understand the significant impact of using these
methods. Lacking the resources to tackle a large-scale problem in-house, we set out to
identify users of the methods in industry to learn of their experiences and examine their
resulting specifications. We interviewed developers from fourteen medium- to large-scale
projects ranging from twelve to 1200 person-months in effort, and have had informal com-
munications with developers on a number of other projects that use these methods. These
projects involved five distinct application domains: avionics, communications, diagnostics,
instrumentation, and navigation/control. In addition, we are engaged in an ongoing consul-
tation effort with an affiliate using one of the methods in the specification of a real-time
safety-critical process control and power plant protection system.

We interviewed multiple projects that have used or are using Ward-Mellor, Hatley-Pirbhai, or
Harel, but we were unable to make arrangements in a timely manner with projects using
ESML. Because of its heritage and inherent similarity to the notations and techniques of the
other methods, we feel that our conclusions can be applied reasonably to ESML notations.
This is especially true in that we are focusing on large-grained issues.

24 CMU/SEI-89-TR-36

Together, these interviews and consultations have pointed out many high-level similarities
among the methods, as well as some important differences. Most importantly, a number of
common themes were reported by most interviewees. These common themes point out the
positive and negative aspects of adopting any of the methods that tend to overwhelm minor
semantic issues and personal preferences. The results of our interviews are summarized
below:

Impressions regarding the application of the methods varied widely, from extremely positive
to strongly negative. However, virtually all interviewees felt the methods themselves were
very useful. In nearly every case, negative impressions can be attributed to problems with
inadequate or ineffective training, management, and tool support.

The most common negatives cited by the interviewees follow, in no particular order.

* Developers had difficulty determining "when to stop" in terms of levels of detail
of specification; in general, this problem diminished over time as the team be-
came more experienced at use of the method.

" There is a perceived difficulty in proceeding from the specification to the soft-
ware design. This was generally attributed to a lack of guidelines from the
methods.

* The methods were often cited as being ineffective as mediums of communi-
cation between technical and non-technical personnel. Although this was not
considered a significant problem, it was considered a major disappointment. In
a number of cases, prototyping was used effectively to overcome this problem.
The methods were seen as compatible and supportive of this approach.

* CASE tool support was universally cited as a problem. Some developers found
their tools "barely adequate," while others found them entirely useless or even
disruptive. Many tool vendors are considered unresponsive to making needed
changes. Vendor hype set up some projects with false expectations, only to
find the tools lacking in performance, robustness, and sufficient implementation
of the methods they claim to support.

* Some projects found that maintenance of the specifications was cumbersome.
It was felt that the methods were most useful in deriving specifications from the
raw requirements, but not very useful, or even detrimental, once a stable design
structure was available and accepted. A solution used in several cases (usually
unintentionally) was to abandon the specifications once this level had been
achieved. Otherwise, the projects found themselves maintaining two increas-
ingly divergent sets of documents.

" Lack of management understanding of software was frequently cited as a major
obstacle. Many engineers were faulted for "drawing pictures" rather than gen-
erating code. In one case, management mandated the use of the methods to a
strongly resistant team; results in this case were equally poor.

Although the concerns listed above are generally applicable to all of the methods, there
were a number of method-specific concerns discussed as well. These are elaborated in the
answers to evaluation questions in Appendix C.

On the positive end, those projects that had training, management, and tools that were at

CMU/SEI-89-TR-36 25

least considered adequate found many benefits in use of the methods. For the most part,
these users are continuing to apply the methods on new projects. Some of the common
observations include:

" The rigor of the methods made requirements much more visible. Discovery of
gaps, inconsistencies, and incorrect statements in the customer requirements
was universally cited as a major benefit.

" Most projects stated that integration, maintenance, and supportability of the
software was noticeably improved due to use of the methods.

" Some projects found that their overall life-cycle was shortened, while others
noted merely a shift in emphasis from coding, test and integration to specifi-
cation and design.

" Behavioral modeling was considered extremely valuable in defining real-time
requirements.

" Communication among the technical team was substantially improved.
" Simplicity and clarity of the graphical notations was called out as being of signif-

icant benefit.

Again, a number of method-specific benefits were cited as well, and these are elaborated in
the answers to evaluation questions in Appendix C.

5.4. Summary of Evaluation Questions and Answers

[Wood88] presented a general approach to the assessment of a given method. A series of
questions is provided in five broad categories summarized as:

e System Characteristics
* Implementation Constraints

* Method Usage Characteristics

* Management Issues

o Problem Workarounds

We applied what we learned from the sample problem exercises, observations from the
field, and our own experiences to these pre-defined questions. Each question and its asso-
ciated answer is provided in Appendix C.

In summarizing the answers to the evaluation questions, we have rejected the possibility of
scoring each answer, applying complex weighting factors, and calculating overall rankings.
By their nature, such weightings are highly subjective and inflexible. Instead, we offer the
following summary comments that can be used as a basis for project-specific weightings if
the reader so desires.

e Functional Characteristics - We give an edge to Ward-Mellor and Hatley-Pirbhai
for following relatively clear and well-established data flow diagramming con-
ventions. We find the conventions of ESML and Harel slightly less appealing,
but this is primarily personal preference. Both notations seem rather more
complex than is necessary.

26 CMU/SEI-89-TR-36

" Behavioral Characteristics - We give an edge to Harel for the elegance and
richness of statecharts, although tabular formats used by some of the other
methods, particularly Hatley-Pirbhai and ESML, are flexible and can be more
expressive in the context of manual cross-checking and verification. A mix of
statecharts and tabular formats might be useful.

" Structural Characteristics - Hatley-Pirbhafs architectural modeling is superior to
the other methods. We feel that Harels module charts can be used about as
effectively, but the documentation does not address them sufficiently; we have
seen no actual applications in practice by which to judge. Ward-Mellordoes not
provide a separate notation for system design, although their implementation
models can be used in many situations in a manner similar to Hatley-Pirbhai
architecture models. They are less expressive and complete for modeling com-
plex system designs, particularly in terms of the depiction of physical intercon-
nections of system modules. As described in [Bruyn88], ESML presently does
not address structural modeling, although it should be compatible with
Hatley-Pirbhai and Harel notations.

" Constraints - There are no clear leaders in this category.

* Representations - Overall, this category is a draw. For the most part the
representations provided by these methods may be intermixed.

" Derivation Techniques - We give a slight edge here to Hatley-Pirbhai for a su-
perior text. All of the methods provide only high-level guidelines. For the most
part, the derivation techniques of these methods may be intermixed.

" Examination Techniques - We give an edge to Harel due to his strong em-
phasis on formal semantic definition and capacity for extensive dynamic anal-
ysis. Unlike representations and derivation techniques, dynamic examination
capabilities of these methods cannot be intermixed easily. In terms of static
analysis, all of the methods provide similar capabilities

" Management Issues - There are no clear leaders in this category.

* Other Issues - Again, this category is a draw overall.

The next chapter pulls together our observations from the field, the sample problems, and

our own experiences with the assessments considered above and filters them to determine
which aspects are of the most significance in terms of method adoption and application.

CMU/SEI-89-TR-36 27

28 CMU/SEI-89-TR 36

6. Recommendations

In the preceding chapters, we have attempted to draw upon the expertise of the developers
of methods, software developers in industry, past investigators, and our own experiences to
paint a clear picture (at least a partial one) of the state of the practice in specification meth-
ods. Most evaluations and comparisons that we have found in the literature fail to provide
concrete recommendations, concluding that "all of the methods have strengths and
weaknesses." Although it has been our intention from the start to provide more specific
recommendations, our results do tend to support the notion that discriminating factors
among the subject methods are not strong.

With that backdrop, this section provides a number of observations about specification
methods in general, and particular recommendations to our primary audience-practitioners
involved in method selection and adoption. A few recommendations are also provided to
our secondary audience of tool vendors, method developers, and program offices.

/- though the observations and recommendations are discussed in an abstract fashion, each
,vas derived from one or more of the sources discussed in this report: actual users of the
methods, the sample problem exercises, or the method assessment questions. References
to the primary sources for these recommendations (documented in Chapter 5 and Appendix
C) are provided in square brackets for each observation and recommendation. For ex-
ample, [5.21 indicates that the primary source is Section 5.2 of this report.

6.1. General Observations

1. These methods have been successful [5.3]. Each of these methods has
been and is being used with success on significant projects. Lacking good
metrics, we must define success informally; however using methods such as
these is clearly superior to an ad hoc development approach. Two such infor-
mal measurements are (1) the existence of working, accepted products built in
part with these methods, where similar products within the same organization
built without the use of the methods have failed, and (2) the opinions of the
users of the methods, who on the whole have reported noticeable (if
unmeasured) improvement in quality, reduced integration time, and better un-
derstanding of the system on the part of the engineers.

2. There are prerequisites for success [5.3]. Although there have been many
successful applications of these methods, there also have been notable
failures. Prerequisites for successful introduction of this technology into an
organization include adequate management, training, and tool support. Man-
agement must support the technology both philosophically and financially.
Personnel turnover during the critical introduction phases should be avoided
as much as possible; we have noted several situations where personnel were
trained early, only to be shifted to other projects just as they were becoming
proficient, sometimes resulting in unrecoverable delays. Significant up-front
training in the use of methods (as well as in the entire selected life-cycle
methodology) is of utmost importance. In addition, ongoing training and con-

CMU/SEI-89.TR.36 29

sultation, particularly during the initial use of the method, is highly beneficial in
risk reduction; the expense of such consultation should be recovered many
times in saved time during the initial project. Once internal expertise is estab-
lished, consultation is likely to be of less value. Finally, tool quality can have a
significant impact on project success. In extreme cases, poor tools can be
much worse than no tools at all. Automated support must be selected with
caution to avoid show-stopping project interference.

3. There are few discriminators among the methods [5.3, C.a]. Our experi-
ence indicates that any of the methods can be used successfully or unsuc-
cessfully. Probably the most typical discriminators in method selection are
personal preferences of technical leaders or project personnel who have used
certain methods on previous projects. Often, religious wars result among the
proponents of the different methods. We have found that the individual battles
fought in these wars revolve around relatively insignificant graphical or seman-
tic features that have little importance in the overall development scenario.
Where the methods are directly comparable (functional and behavioral
specification), most discriminating differences are very minor indeed. More
important discriminators are found in areas where the methods are not directly
comparable. These discriminators are discussed in the next section.

4. These methods do not eliminate the essential difficulties of software de-
velopment [5.2, 5.3, C]. With the use of methods such as those described in
this report, many of the accidental aspects of specification [Brooks87] can be
mechanized and automated. Further, the use of formal methods holds the
possibility of automation of certain aspects of refinement and verification. The
fundamentally difficult part of software development, however, probably will
never be fully automatable. [DSB87] argues "that the essence (of software
development) is the designing of intricate conceptual structures, rigorously
and correctly. The part of software development that will never go away is the
crafting of these conceptual structures; the part that can go away is the labor
of expressing them." Claims of CASE tool vendors to the contrary may be
safely ignored. No tools or methods (including these) remove the conceptual
difficulties of software development. What these methods do provide is the
ability to capture those conceptual structures to make reasoning about them
easier and the ability to mechanize some of the more straightforward concep-
tual tasks and transformations. In this way, labor can be focused on the more
critical crafting tasks.

6.2. Recommendations to Software Developers
1. If you are not using a specification method, start doing so [5.3, C.f]. The

evidence that we have seen for this advice is substantial, provided the sys-
tems under development are beyond a certain conceptual critical mass (the
smaller and less complex the system, the less payback is likely to be achieved
in using these methods).

2. If you are already using one, stick with it [5.3, C.f]. If one of these methods
is being used with success, we have seen no evidence that would indicate that
switching to one of the other methods discussed in this report will yield signifi-
cantly better results. It would be more fruitful to focus on improving and
maturing the procedures and techniques that are in place, such as merging
components from other methods with those of the existing method.

30 CMU/SEI-89-TR-36

3. If you are selecting one, these are the key discriminators. In selecting
one of these methods, heaviest emphasis should be placed upon:

*Compatibility with your software process and life-cycle goals [C.a,
CJ, C.g] - In particular, all of the methods are equally capable of speci-
fying functional and behavioral requirements. Given an existing scheme
for specifying system architectural design, any of the methods would be
sufficient for system and software specification. Lacking such a
scheme, however, we recommend selection of Harel or Hatley-Pirbhai,
both of which incorporate distinct notations appropriate for complete
system design. Alternatively, one could successfully integrate
Ward-Mellor or ESML with Hatley-Pirbhafs Architectural Models or
Harefs Module Charts. More important than the selected notation, how-
ever, is ensuring that the process of system design in fact takes place
when appropriate.

* Quality and capabilities of tool support [5.3, C.d, C.e, C.f] - The ca-
pabilities desired of a toolset must be understood before an appropriate
selection can be made. Although this report is not the appropriate
forum for the discussion of various tool capabilities, it is important to
consider those capabilities that may be important for a particular appli-
cation, problem domain, or development process. Examples of tool fea-
tures that might drive method selection include: dynamic analysis, ex-
ecutable specifications, animation, prototype code generation, docu-
mentation interface, user interface prototyping, and integration with
other method notations and techniques.

" Availability of adequate method training [5.3, C.f] - We recommend
a minimum of one to two weeks of up-front training in the application of
each method. We have noted that training has been most effective
where the students are knowledgeable in software engineering con-
cepts. Less time should be required for tool-specific training. Available
training vendors should be examined to determine the appropriateness
of course materials and the expertise and skills of the instructors. The
availability of satisfactory training courses and materials should be con-
sidered an important factor in method selection.

" Availability of In-house or external consulting expertise [5.3, C.f,
C.g] - Initial training is important in providing an appropriate framework
for methods use, but is insufficient for the efficient ramp-up of knowl-
edge from "novice" to "expert." Users of these methods involved in their
first application often spend considerable time agonizing over decisions
which are actually unimportant. This phenomenon is primarily at-
tributable to a lack of self-confidence in the use of the methods, and is
usually alleviated after a project has been successfully completed. The
best way to deal with the problems of the novice is to provide for expert
consultation (on either a full- or part-time basis, depending on need) to
answer questions and to participate in artifact reviews and walk-
throughs. Thus, the availability of such expertise should be considered
an important factor in method selection.

* Personal preferences and experience of the project team [5.3, C.f,
C.g] - Based on previous training or experience, project leaders or staff
may have initial biases toward one or more methods. For these meth-

CMU/SEI-89-TR.36 31

ods, there is little to be gained in fighting those biases unless the dis-
criminators discussed above are significant enough to so warrant.

4. If the above are equal, pick the best documented and simplest method.

" For general systems (mix of functional, behavioral, and structural
characteristics), we lean toward Hatley-Pirbhai due to the quality of the
available text and the overall simplicity and flexibility of their notations
and techniques [5.2, C.a, C.g].

" For systems with complex behavioral interactions, the Harel notations
may be preferred. Statecharts are particularly well-suited to modeling
complex timing interactions often found at lower levels of specification.
A mixture of statechart notations with ESML, Hatley-Pirbhai, or
Ward-Mellor functional notations and conventions would probably work
well, but is not presently supported by automated tools. Further, Harers
emphasis on semantic definition and dynamic analysis may be highly
beneficial where adequate tool support is available [5.2, C.a, C.c, C.e].

5. Invest heavily In the selection process [5.3]. Selection of methods and
tools is a very difficult and costly process. Initiate the evaluation and selection
process well before the target project is initiated. Anticipate needing at least
six months for nominal evaluation of three or four methods and tools.

6. Invest heavily in up-front training [5.3, C.f]. Based on our observations,
projects that attempt to save money by skimping on training have experienced
a higher incidence of project turnover and failure than those where training
was emphasized. Projects should invest in at least one week of up-front train-
ing for the selected method (exclusive of training in other methods, such as
design and verification techniques).

7. Do not confuse method training with tool training [5.3, C.f]. Tool vendors
usually provide some level of training, often at no cost, in the use of their tool-
set. Toolset training by itself is useful, but is also required. Tool vendor
trainers often do not have the kind of expertise in complex real-time applica-
tions required for knowledgeable training. Further, they will almost certainly
be biased, and they may fail to indicate where their tool does not support the
methods in question.

8. Invest in expert consulting for the first application [5.3, C.f, C.g]. Even
with up-front training, software developers usually do not have the experience
or the confidence needed to pursue the effort efficiently. The small cost of an
expert consultant should pay large dividends in avoiding wasted time on trivial
issues and in increasing confidence, consistency, and conformity of the devel-
opers. Many of the members of failed projects have observed that a lack of
available expertise was a primary contributor to project failure.

9. Beware of tool and method hype. Claims of reduced development time,
cost, and effort attributed to methods or tools may not be based on the results
of unbiased assessment or empirical evidence. For a more balanced assess-
ment, we recommend a review of the observations of experienced users, such
as the summary provided in Section 5.3 of this report.

10. Invest up-front In problem resolution and workarounds [5.3, C.g]. All
methods and tools have weak points. Many of those weak points have been

32 CMU/SEI-89-TR-36

pointed out elsewhere in this report. To avoid poorly-timed, show-stopping
problems, effort should be spent in advance of the first application of the se-
lected method and tool to identify specific problem areas and manageable
workarounds.

11. Establish a process group [5.3, C.f]. Selecting and implementing a good
specification method will not guarantee project success. All technical areas,
including design, implementation, verification, and maintenance must be ad-
dressed, as well as various management and administrative issues. A good
place to start in gaining control over the software development process is to
establish a software engineering process group (SEPG) within the
organization [Humphrey87]. Once a stable process, methodology, and envi-
ronment are established, the organization can focus on areas of particular
technical risk for each project with efficiency.

6.3. Recommendations to Tool Vendors

1. Concentrate first on supporting methods as defined [5.3, C.a]. Few avail-
able tools completely and correctly support these methods. We believe that it
is important to the success of the customers, and ultimately to the health of
the CASE vendors and industry, to fully support the syntax and semantics of
the chosen methods.

2. Improve operational aspects of tools [5.3, C.c, C.d, C.e]. Almost as impor-
tant as full method support is human factors engineering. A CASE toolset
priced perhaps in the hundreds of thousands of dollars should be as easy to
use, flexible, and reliable as the desktop productivity tools currently available
on personal computers for a few hundred dollars. Without a usable and com-
plete toolset, secondary features such as automatic code generation and auto-
matic document generation are of very limited value.

3. Investigate Increased flexibility [5.3, C.a]. Lacking definitive standards in
notations and conventions, maximum utility requires open architectures and
flexible syntax and semantics. For example, a flexible tool would permit the
user to select and intermix any of the graphical or textual notations of any of
the methods discussed in this report. Such a capability may be far off.

6.4. Recommendations to Method Developers

1. Document specific requirements for tools vendors and selectors [C.c,
C.e]. It is not entirely reasonable to expect tool vendors to fully support a
method if the syntax and semantics of that method are not clearly defined.
Hatley-Pirbhai has done a good job of defining the static requirements and
options expected of a tool to claim support of the method [Hatley88]. By con-
trast, the other methods, particularly Harel, have done a good job of describing
formalized dynamic semantics to varying degrees. Both types of information
are important and necessary. We strongly recommend that all method devel-
opers provide both types of description.

2. Focus on Issues of transition to design [5.3, C.d, C.g]. Although the es-
sential difficulties of extracting a design from a requirements statement prob-

CMU/SEI-89-TR-36 33

ably cannot be overcome [DSB87], many of the mechanical aspects of deriv-
ing first-cut designs can be approached. Only Ward-Mellor has addressed this
issue to any significant depth. Better descriptions and examples of transfor-
mation into structured designs and object-oriented designs are needed. A re-
lated issue largely ignored is that of verification of the design against the spec-
ification.

3. Focus on maintenance of specifications [5.3, C.b, C.g]. Many users of
these methods have found that the resulting specifications are very cumber-
some to maintain. Some users abandon the specifications entirely when a
stable design becomes available. This problem exists at least in part due to
the difficulty in changing from specification to design, as discussed above
Maximum benefits cannot be obtained from these methods without some as-
sistance on this issue. Of particular concern is the impact of this problem on
long-term maintenance of the software (post-delivery), considering that one of
the major strengths of these methods is reported to be improved maintaina-
bility and supportability.

6.5. Recommendations to Program Offices

1. Require ongoing software process evolution [5.3, C.g]. A stable and
maturing software process, of which these and other methods are only a part,
is critical to reduced-risk software development [Humphrey87]. The existence
of such a process is more important than the individual methods, tools, proce-
dures, arc! documentation standards that comprise the process. Contractors
should be required to prove in their proposals the establishment of an evolving
process.

2. Require proven track record In methods [5.3, C.f, C.g]. Given the wide-
spread failure of software projects lacking repeatable methods and tools, pro-
gram offices should require that contractors show evidence of successful de-
velopment of software. This evidence should be based not only on high-
quality staff (which is not usually repeatable) but also on established use of
methods such as those discussed in this report. If the selected contractor
does not have a record in the use of methods, the program office should an-
ticipate and require up-front training and ongoing expert consulting as de-
scribed elsewhere in this report.

3. Require ongoing tool/environment evolution [5.3, C.f, C.g]. Program of-
fices must be aware of the high cost of selecting and establishing new tools
and environments. The selection process requires extensive time (perhaps
six months to one year) that should be planned into the program schedule un-
less the contractor can demonstrate that an adequate environment and set of
tools is in place. Similarly, the establishment of the environment, which may
include changes in management and technical procedures, philosophies, and
styles, come only at high initial cost. Our experience indicates that the re-
quired time probably cannot be significantly or efficiently reduced by increas-
ing available manpower.

4. Review technical content, not just schedule and costs [5.3, C.e, C.f, C.g].
Reviewers need appropriate domain expertise and at least some familiarity
with the methods being employed; in addition, early review of requirements

34 CMU/SEI-89-TR-36

specifications will increase the likelihood of successful validation of the
deliverable product.

5. Ensure compatibility of methods and tools among multiple contractors
for a program [5.2, C.e, C.f]. The integrating contractor should be tasked to
show definitively that effective compatibility can be achieved. Otherwise, dif-

ficulties in integration and maintenance of incompatible artifacts are likely to
occur.

CMU/SEI-89-TR-36 35

36 CMUISEI-89-TR-36

7. Conclusions
The purpose of this report is to provide relevant information to assist engineers in the selec-

tion of methods. The report describes our approach to the comparison and evaluation of

some of the more popular specification methods currently in use and provides recommen-
dations that we hope are useful to current practitioners. As such, the report reflects current
state of the practice and does not make value judgements as to the effectiveness of this set

of methods versus approaches that may be on the horizon.

Likewise, this report does not attempt to compare dissimilar methods. Methods can be
categorized into several broad classes reflecting, for example, the primary vantage point
from which one views a software artifact. These classes are often orthogonal to, or at least

significantly unlike, one another. The almost complete lack of metrics against which to
measure classes of methods makes speculation as to which class is "best" highly subjective
and essentially meaningless. For this reason we have chosen to examine methods belong-
ing to roughly the same class.

Existing literature generally fails to consider the problems associated with the application of
methods to large-scale or highly complex systems. We deliberately set out to avoid this
failing by interviewing method users from a variety of application domains, and by involving
ourselves in consultation with a moderately large project during its development. It is signif-
icant to note that our results do not arise from a controlled experiment. The negative aspect
of this is that determining the factors resulting in success or failure on a given project is a
risky proposition due to the impurity of the subject environment. The positive aspect of the

uncontrolled conditions is that our observations are free of academic bias; we have reported
on the experiences and observations of actual users suffering under actual adverse con-
ditions. For those who must make method selections today, we believe it is these types of
experi-nces that have the most potential benefit.

Software dcvelopers indicated that difficulties in management, training, and tool support
were more important than method-specific problems (see Section 5.3). In citing method
shortfalls, the developers discussed:

" Difficulty in determining the appropriate level of detail

" Confusion over the transition to software design
" Ineffective communication with non-technical personnel

" Difficulty in maintaining specifications over the project life-cycle

Balancing these problems were the many benefits of using these methods, including:

" Rigor of the notations made requirements much more visible

" Integration, maintenance, and supportability were improved

" There was a shift in emphasis from life-cycle "back-end" to "front-end"

" Clear definition of behavioral requirements was possible
" Improved communication among technical personnel was achieved

CMU/SEI-89-TR-36 37

We applied what we learned from the users and from the literature to a predefined set of
evaluative questions. Our results indicated that each of the methods can be used effectively
within a suitable life-cycle and process framework. We provided recommendations for spe-
cific selection alternatives based on large-grained factors such as process compatibility, tool
capabilities, and the biases of project staff. Additional discriminators included the quality of
available texts, training, and expert consultation.

We also provided specific recommendations on important issues faced by software devel-
opers, tool vendors, method developers, and program managers. These recommendations,
made in conjunction with a thoughtful evaluation of other methodology components (e.g.,
design methods) and of automated support, should assist organizations in making effective
selections for current and future projects.

38 CMU/SEI-89-TR-36

Appendix A: Special Topics
The following topics are related to the central issues of this report but are outside of its
scope. To provide background rationale, we briefly discuss a number of these issues.

A.a. Brief History of the Subject Methods

A wide variety of traditional specification methods (such as Jackson System Development
(JSD) [Jackson83], System Requirements Engineering Method (SREM) [Alford77], and
Entity-Relationship modeling [Chen76]) have been proposed or used over the past two
decades. However, the traditional methods that are in most common use in industry today
are variants on the concepts generally referred to as Structured Analysis.

Structured Analysis was pioneered by Doug Ross in the early to mid-1960s, and was
popularized in the mid and late 1970s by Ross (as SADT)[Ross77], Tom Demarco
[DeMarco78], and Gane and Sarson [Gane79]. Each of these three variants gained accep-

tance primarily in the business data processing field. In general, Structured Analysis tech-
niques focus on hierarchical data-flow analysis of requirements, popularly called the
functional view of requirements because data flow diagrams depict the flow of information
from one function to another within the system.

While functional modeling proved useful and even desirable in the data processing commu-
nity, it was largely rejected by the real-time systems community as an insufficient statement
of requirements. Real-time system developers required means for describing not only the
functional components of the system, but also the dynamic behavior of the system. In addi-
tion, it became clear that basic structured analysis techniques did not provide a mechanism
for capturing the details of system/subsystem structure required for a complete system
specification.

In response to these inadequacies, in the early and mid-1980s several independent
methodologists proposed variations on basic structured analysis intended to address some
of tiese concerns. The most prominent enhancements were introduced by Ward-Mellor
[Ward85] and Hatley-Pirbhai[Hatley87]. The former was developed at Yourdon, Inc., while

the latter was developed jointly by Boeing Commercial Aircraft and Lear Siegler, Inc. At
about the same time, Harel developed a unique behavioral notation called statecharts as a
result of a consulting relationship with the Israeli Aircraft Lavi project. This notation was
extended by Harel, Amir Pnueli, Michal Politi, Rivi Sherman, and others to include functional
and structural components similar to those found in Ward-Mellor and Hatley-Pirbhai. A
fourth notation, ESML [Bruyn88], was introduced in 1987 by a group including represen-
tatives from Boeing, Hughes Aircraft, and Honeywell, as an attempt to standardize a nota-
tion that captures many of the benefits of both Ward-Mellor and Hatley-Pirbhai notations.
Other methods of similar capabilities were proposed but are less well known.

CMU/SEI-89-TR-36 39

A.b. Appropriateness of Specification Phase

Battles continue to be waged over the need for a distinct specification stage in the software
development life-cycle. [DSB87] states that specifying requirements is the most crucial part
of any software development effort. Failing this, the remainder of the effort is more likely to
exhibit errors, delays, and cost overruns.

Many of the disputes focus on the idea that there is a significant potential for wasted effort
when a specification approach is taken that is substantially different from the ultimate design
approach. We do not argue with this idea. We merely note that, for systems of significant
size, there is a clear necessity to focus on implementation-independent analysis at some
point in the development process. Extensive feedback and iteration is of obvious benefit,
however, and the advantage of compatibility between specification and design notations and
techniques is indisputable and self-evident.

The purpose of a separate specification is not to provide additional work for engineers, but
rather to prevent them from becoming delayed by design details when it is advantageous to
focus on more abstract issues. We have found through our field investigations (discussed in
this report) that many projects fail due to overzealous specification of requirements, but that
even more projects fail due to the lack of a distinctive specification effort. The key to suc-
cess seems to be the ability to strike the right balance between the two. Unfortunately, the
right balance can vary significantly among projects and application domains.

A.c. Formal Methods

There exists a class of specification and design methods that are generally referred to as
formal methods. These methods permit the specification of systems and software with
mathematical precision. Such techniques allow the analyst to reason about the specifica-
tions to prove qualities such as correctness, consistency, and absence of deadlock. For the
most part, these kinds of techniques are not yet widely used in practice, particularly in the
United States.

The focus of this report is on methods that have a formal basis, but are not rigidly formal in
all aspects of notation and technique. These types of methods have been termed
semi-formal or traditional methods. We have chosen to focus on these kinds of methods for
several reasons:

1. They are relatively easy to understand, and hence the perception is that they
are likely to be more readily adopted into practice in the near-term.

2. They have achieved more wide-spread application in industry. There is an
historical track record of the use of these kinds of methods on real, large-scale
projects. We felt it would be useful to examine this historical evidence.

3. They form the basis of the existing and expanding CASE market. Companies
are engaging in expensive commitments to particular products, and we hope
to provide some basic guidance in at least part of the CASE tool selection
process.

40 CMU/SEI-89-TR-36

4. A separate effort is underway at the SEI that is focusing on examination of
formal methods.

A.d. Object-Oriented Development

For the past few years, one of the prevalent buzzwords in the software engineering commu-
nity has been object-oriented. It represents yet another term that has different meanings to
different groups of people. Much has been written on object-oriented design ([Booch83b],
[Buhr84], [Cherry87]), but relatively little has been written on object-oriented requirements

analysis and specifications. Although this is a topic of recent increased attention
([Seidowitz87], [Bailin89], [Hoza89], [Bulman88]), most work that we have seen has
focused on the transformation of functionally-oriented specifications into object-oriented de-
signs. Many of these techniques require the developers to perform an initial analysis using
some variant of basic structured analysis (e.g., as described by Demarco, Gane-Sarson, or
Yourdon), or one of the real-time extensions discussed in this report. Having developed a
functional specification, the developers are then provided with guidelines for identifying
various object classes in the specifications, and carving the specification into design objects.
Although this work is useful, we classify it as transformation techniques rather than specifi-
cation techniques.

Other recent literature ([Shlaer88], [Ward89b) has emerged that attempts to formalize infor-
mation modeling as the basis of object-oriented analysis. With the current industry focus on
object-orientation, we expect to see more of this type of discussion over the next few years.

Because we considered this technology to be relatively immature, we chose not to inves-
tigate object-oriented requirements specification at this time, although such topics may pro-
vide fertile ground for future evaluation.

A.e. The Relationship of Methods and Tools
The distinction between methods and tools is a moving target. This is particularly problem-
atic in that most practitioners are introduced to methods only indirectly, through the use of
some toolset. Although adequate automation is critical to the continued growth of methods
use in industry, we feel it is not only appropriate, but vitally important to examine methods
and tools separately. This is true primarily because few tools fully support the methods, and
the tools and methods evolve independently of one another. For example:

o Due to changes in host platforms, the emergence of a better toolset, or the in-
adequacy of the existing toolset, a new toolset may be acquired.

* Engineers transferred to, or hired for, the project will have been trained on dif-
ferent toolsets.

* The toolset will undergo multiple revisions and upgrades resulting in substantial
changes in method support.

CMU/SEI-89-TR.36 41

It is important that engineers receive training in the fundamental aspects of the underlying
methods to facilitate:

* Identification of tool deficiencies and workarounds to those deficiencies.
* Adaptation to a different toolset, with its concomitant deficiencies and

workarounds.

* Adaptation to revisions and upgrades to either the toolset or the methods.

Such method training, in addition to the expected tool-specific training, will enable the team
members to recognize deficiencies and react appropriately.

Other evaluative reports ([SPS88], [IDA87], [CECOM89]) generally have not made a clean
distinction between methods and tools. Although one of our method identification criteria
was the availability of commercial automation, our intent has been to focus on methods in-
dependent of existing automation for the reasons discussed above. Further, inclusion of
tool-specific evaluation would render this report obsolete by the time of publication due to
the rapidly evolving state of the CASE market.

42 CMU/SEI-89-TR-36

Appendix B: Affiliates Survey Results
This section presents the results of the affiliates survey discussed in Section 3.2. Each of
the five questions of the survey are listed along with a tally of responses and a brief discus-
sion. The tallies are presented as percentages. Please note that respondents were free to
reply to more than one category, so the total percentages may exceed 100%.

Note that this discussion is not intended to present a professional statistical analysis of
results, but rather a simple report of tallies. Brief discussions of the results are provided to
tie the survey into this report; however speculation regarding the results generally are left to
the reader.

Of 447 questionnaires, 122 (27%) were returned.

QUESTION 1: What type of real-time software Is developed by your organization?

The purpose of this question was to determine the breadth of application domains faced by
our affiliates, as well as to provide cross-correlations between application domains and
methods used. Nine different application domains were listed, along with space to write-in
additional domains. The results are summarized below:

41 C31
40 avionics
38 navigation/control
38 electronic coununications
28 satellite/telemetry
23 shipboard
19 battlefield
19 ATE/diagnostics
15 robotics

6 simulators (write-in)
3 industrial control (write-in)

10 others (all write-in, 2 or less each)

It is notable that the spread of applications indicates that there are no particularly dominant
types of real-time systems among our affiliates. Although C31 and avionics topped the list,
several others were nearly as high. The results of the survey would seem to apply to a wide
variety of problem domains, which is probably representative of our target audience.

QUESTION 2: In developing these systems, which of the following specification meth-
ods are used?

For this question, six methods that appear regularly in the literature were listed.

The results of this question are summarized below:

38 Object-Oriented Analysis

CMU/SEI-89-TR-36 43

31 Harel
31 Ward-Mellor
29 Hatley-Pirbhai
7 Structured Analysis (write-in)
6 none (write-in)
5 Systems Requirements Engineering Method (SREM)
3 Jackson System Development (JSD)
1 Extended Systems Modeling Language (ESML)

17 others (all write-in, 2 or less each)

Interestingly, more respondents reported using object-oriented analysis than any other
method, despite our feeling that object-oriented analysis methods were relatively new and
immature at the time of the survey. There are many possible explanations for this
phenomenon, but we will leave speculation to the reader. Appendix Section C.d provides a
brief discussion of object-oriented development that may provide some insight.

Of more significance for our purposes is the response on the three subsequent methods,
Harel, Ward-Mellor, and Hatley-Pirbhai. These methods are very similar in approach and,
along with object-oriented analysis, they seem to be overwhelmingly the most popular meth-
ods.

QUESTION 3: In developing these systems, which of the following design methods are
used?

Five well-known methods were listed for this question, along with space for write-in re-
sponses. The intent of this question was to use the responses as a basis for the possible
future selection of design methods for evaluation. The results are summarized below:

66 Structured Design
51 Object-Oriented Design
6 PAMELA
5 DARTS
3 Jackson System Development
2 SCR (write-in)

12 other (all write-in, all two or less)

QUESTION 4: In developing these systems, which of the following programming lan-
guages are used?

Although this question perhaps is not of direct importance to the evaluation of methods, it
was felt that the responses would be interesting in light of the preceding questions. Seven
prevalent languages were listed. The results are summarized below:

74 Ada
55 C
48 FORTRAN
25 Pascal

44 CMU/SEI-89-TR-36

22 JOVIAL
18 CMS-2
18 assembler (write-in)
3 HAL-S
3 PL/M (write-in)

10 others (all write-in, 2 or less each)

QUESTION 5: Would you be willing to aid the SEI In the Identification of suitable sample
problems from your application domain(s)?

The purpose of this question was to identify affiliates who might be willing to continue to
participate in this study beyond the initial questionnaire. In particular, our goal was to iden-
tify sample projects for up-close examination. One of the main goals behind this study is the
examination of real-world experiences with the selected methods. Examination of artifacts
from actual projects, and interviews of actual users of the methods would make possible
evaluations that are much more meaningful and believable to our affiliates and the software
engineering community in general. See Section 5.2 for further discussion.

The results are summarized below:

56 yes
26 maybe

18 no

CMU/SEI-89-TR-36 45

46 CMU/SEI.89-TR.36

Appendix C: Evaluation Questions and Answers
[Wood88] presents a general approach to the assessment of a given method. A series of

questions are provided in five broad categories summarized as:

" System Characteristics
" Implementation Constraints
" Method Usage Characteristics

" Management Issues

• Problem Workarounds

In the following subsections, we have extracted a subset of the questions from
[Wood88] that we consider appropriate for this evaluation. Some questions have been

eliminated, while others have been modified slightly. A few new questions have been added
as well. Data gathered from the sample problems and project interviews has been used as
the primary source for answers to these questions, although we do not generally differen-
tiate between the sources.

As a general note, many of the evaluation questions consider the explicit support of a partic-
ular method for a given capability or characteristic. The reader should keep in mind that
although a method may lack explicit support, in many cases the method nevertheless can
be used to model the desired capability in question. In these cases, some amount of fore-
thought and customization is required on the part of the user. For example, although none
of the methods provides a specific notation for modeling error-handling capabilities, the
notations that they do provide are sufficiently general to permit such modeling. In other
words, the methods would not inhibit a creative engineer from performing necessary cus-
tomizations. Because all applications have domain- and project-specific attributes, such
flexibility becomes an important factor.

The questions in the subsequent subsections are organized into the categories listed above.
Each category is divided into subcategories and then into individual questions. Please refer
to [Wood88] for clarification on the question structure.

Section 5.4 summarizes the answers.

C.a. System Characteristics

Overall Characteristics

1. Does the method allow the representation of the functional, behavioral,
and structural views? As previously shown in the classification tables, all of
the methods support representation of the functional and behavioral views of
the system, using data flow and finite state representations, respectively. Only
Hatley-Pirbhai and Harel offer distinct representations for system design.
These notations are critical for complete system definition, although they are
less important for software-only specification.

CMU/SEI-89-TR-36 47

* Hatley-Pirbhai: The functional notations (Flow Diagrams) are the
simplest of the four methods' notations. Semantics generally are
straight-forward and clear, with very few components. Behavioral nota-
tions are flexible, allowing any combination of tables and diagrams, al-
though in practice state transition diagrams are used infrequently.
Users consistently cited confusion in understanding multi-sheet control
specifications. System structure modeling is supported with Architec-
ture Models, which allow the capture of hardware/software allocation
decisions and interface specification. Hatley-Pirbhai notations appear to
scale up well; the optional splitting of Flow Diagrams into Data Flow
Diagrams and Control Flow Diagrams is practical for large-scale,
control-intensive systems; emphasis on state tables rather than
diagrams is practical for flexible modeling of complex behavior.

" Harel: The functional notations (Activity Charts) are sufficient, but by our
observations they can result in more clutter than Hatley-Pirbhai nota-
tions, primarily in the more complex notations for merging/splitting of
flows, and combined data/control flow can be problematic for large-
scale systems. The behavioral notation, statecharts, is one of the major
contributions of Harets work to specification. Statecharts provide excel-
lent complexity management through a graphical state hierarchy, and
permit extensive and elegant expression of behavioral patterns. The
structural notation, Module Charts, can be used in a fashion similar to
Hatley-Pirbhai Architecture Modeling, although they are less expressive
and apparently not yet widely used. Model semantics are well-defined
formally.

" Ward-Mello The functional notations (Flow Diagrams) are essentially
similar to Hatley-Pirbhai, although the integration of control notation
tends to result in more clutter. We find the graphic inclusion of process
triggers and activators intuitively appealing. However, the graphic inclu-
sion adds very little additional information to the overall model, while
dramatically increasing clutter. The behavioral notations consist almost
entirely of state-transition diagrams, which are inadequate for the ex-
pression of all but the simplest state machines. These are less flexible
than the Hatley-Pirbhai and ESML tabular formats, and far inferior to
Harers statecharts. Ward-Mellor does not provide a distinct structural
notation for system design, although it would be compatible with either
the Hatley-Pirbhai or Hare' notation. Implementation modeling can be
used to an extent for the same purpose.

* ESML: The functional notations and semantics are very similar to those
of Ward-Mellor, with minor graphical differences and the capability of
placing graphic process controls on separate diagrams. The behavioral
notations borrow some of the tabular formats of Hatley-Pirbhai, along
with state-transition diagrams. Some notations are added to the basic
Ward-Mellor trigger/activation features. ESML does not provide a struc-
tural notation for system design, although it would be compatible with
either the Hatley-Pirbhai or Harel notation. A structural notation exten-
sion is planned.

48 CMU/SEI-89-TR-36

2. Are the views complementary?

* Can there be Integrated views of function and behavior as well as
independent views? - All of the methods integrate functional and be-
havioral views by means of control flow. Harers statecharts are most
capable of acting as a standalone model of behavior due to their rich
semantics and hierarchical nature. The other methods rely heavily on
the functional model to provide the framework for distribution of the be-
havioral model, and in fact this same approach is recommended by
Harel as well [Hare188b].

* Are there suggested techniques or rules for deriving the structural
view from the functional and behavioral views? - Ward-Mellor and
ESML do not provide a distinct notation for system design. Ward-Mellor
provides techniques for deriving an implementation model from an es-
sential model. Harel provides essentially no guidance for the derivation
of the structural model. Hatley-Pirbhai devote about a third of their text
to the structural notation and its derivation, although the suggested
techniques comprise fairly high-level guidelines.

Functional Characteristics

1. Does the method provide a representation that clearly draws a boundary
around the system and separates It from Its environment? Ward-Mellor,
ESML, and Hatley-Pirbhai all use a special flow diagram called a Context
Diagram to draw a boundary around the system. For Harel, a top-level Activity
Chart provides the same effect. Each of the methods provides the ability to
clearly identify external entities.

2. Does the method allow the representation of data that flows across
these interfaces using an appropriate level of abstraction? All of the tech-
niques provide for abstract definition of external interfaces. ESML and
Ward-Mellor are limited to modeling the software aspects of interface and
protocol, while the structural modeling facilities of Harel and Hatley-Pirbhai
permit more detailed specifications at the system level. For example, the lat-
ter two are most suitable for the specification of rigidly defined interfaces to
existing devices.

3. Does the method provide a technique for representing each process, In-
cluding Its inputs, outputs, functions, and the exceptions that It may
raise? All of the methods support process descriptions defining inputs and
outputs. Functional descriptions are not usually formal. Although the nota-
tions could be compatible with formal specifications, none of the methods gen-
erally recommend formalisms for process descriptions. "Structured English,"
decision tables, mathematical formulae, or any other type of specification may
be used. Ward-Mellor does discuss the use of formal notations, such as pre-
and post-conditions, although none of the developers that we interviewed
were using them.

CMU/SEI-89.TR-36 49

4. If mathematical algorithms must be devised, does the method provide a
representation that is familiar to the algorithm developers and can be un-
derstood by the algorithm Implementors? Mathematical notations may be
used with any of the methods, although a mapping is required between vari-
ables within a formula and the data flows that they represent.

5. Do the representations allow specification of functionality under adverse
conditions such as loss of data or single sensor failure? None of the
methods specifically addresses unusual conditions. This type of processing is
specified as any other type, and may require some adaptation on the part of
the analysts to avoid unsightly flows across multiple levels of diagrams. All of
the methods could be improved in this area, although this is not a discriminat-
ing factor in choosing among them.

Behavioral Characteristics
1. Does the method Incorporate the concept of describing the behavior of

the system using a state-oriented model? Yes, all of the methods use
some form of state modeling for behavioral description.

2. Does the representation of the model Include the representation of
events, actions, states, transitions, and conditions (guards) dictated by
the functional environment? All of the notations support the representation
of states, transitions, and actions. Only ESML and Harel support both events
(time-discrete) and conditions (time-continuous) as mechanisms of transition
from state to state. Ward-Mellor requires the use of events to trigger transi-
tions, which may result in the necessity for more interim states and transitions.
In contrast, Hatley-Pirbhai generally requires the use of combinations of con-
ditions to trigger transitions. Hatley-Pirbhai models can generate events
through process specifications (using the keyword "issue"); this is not entirely
satisfactory in that the control specifications do not visually distinguish be-
tween the two types of signals, making interpretation of the model somewhat
difficult. Hatley-Pirbhai notations do not distinguish time-discrete external
events.

3. Is the model appropriate for the complexity of the system under
development? Simple state-transition diagrams are adequate only for
moderately small systems of low behavioral complexity. As such, modeling of
complex behavior can be awkward with Ward-Mellor, which places heavy em-
phasis on this type of diagram. The state-transition tables, state-event
matrices, and process-activation tables available under Hatley-Pirbhai, and
also ESML, are more practical for modeling complex behavioral relationships.
Hatley-Pirbhai multi-sheet behavioral specifications are useful but complex to
build and difficult to comprehend. Harets statecharts are ideally suited to
modeling complex behavior patterns that can be cumbersome using the other
techniques, and they scale up well for larger systems.

4. Can the representations for complex models be partitioned to help de-
velopers deal with complexity? Harets statecharts are easily partitioned ac-
cording to their own hierarchy. Hatley-Pirbhai notations can be partitioned into
separate, but cooperating, tables and diagrams in multi-sheet specifications,

50 CMU/SEI-89-TR-36

but hierarchical partitioning is generally "slaved" to the functional hierarchy,
which is less elegant and flexible than the statecharts approach. The latter is
also true of Ward-Mellor and ESML notations. Ward-Mellor describes a mech-
anism permitting limited, behavioral hierarchy [Ward86].

5. Can stimulus/response relationships be represented In a time-dependent
manner? Hatley-Pirbhai is the only method that addresses specification of
stimulus/response timing requirements, although the mechanism ("Timing
Specification" tables) is cumbersome and not easily derived. The other meth-
ods do not address external timing requirements to any significant degree;
however, the same kind of approach could be used with them.

6. Does the method allow representation of the relationship between the
behavioral model and the functional model? All of the models integrate
functional and behavioral views in two ways: flow of control and process con-
trols (process activation and triggering mechanisms). Ward-Me//or and ESML
depict process controls graphically, while Hatley-Pirbhai and Harel do not.
This "graphic causality" [Ward89a] is somewhat attractive initially, but in prac-
tice results in diagrammatic clutter and is not of essential value. To mitigate
the problem of clutter, ESML permits separating the depiction of information
flow from that of process control.

7. Does the method allow the representation of periodic and aperiodic
events? Yes, although the method notations do not distinguish between peri-
odic and aperiodic events graphically.

8. Does the method allow the representation of discrete and time-
continuous data? Yes. Ward-Me//or and ESML distinguish between discrete
and continuous flows graphically, while the others do not.

9. Does the method allow the representation of Input rates and bounds on
those rates? Yes, this information can be maintained in the data definition
repositories supported by each method.

10. Does the method allow the representation of concurrent processes?
Yes. In each of these techniques, all of the processes are potentially concur-
rent. By contrast, it is usually necessary to explicitly state required sequen-
tiality. Harel's statechart notation provides extensive capability for modeling
the timing patterns of concurrent processes.

11. Does the method provide representations that capture performance
requirements? Hat/ey-Pirbhai captures external timing constraints in a
"Timing Specification" which specifies response times from a given input
signal/event to an output signal/event. The method requires that each exter-
nal flow be represented in the Timing Specification, whether or not timing re-
quirements actually exist; however, there are no guidelines provided for deriv-
ing the stimulus-response paths. Examples of the specifications are some-
what informal. Harets methods provide for extensive internal timing and
synchronization specification, with formalisms provided for such mechanisms
as timeouts. By contrast, Hatley-Pirbhai allows a concept termed "universal
access to time," which permits the reference to time (either relative or
absolute) without formal semantics. Neither Ward-Mellor nor ESML capture
performance requirements. None of the methods provides manual techniques
for analyzing performance requirements.

CMU/SEI-89-TR-36 51

12. Does the method assist the developer In handling exception, fall-back,
and recovery conditions? None of the methods provide specific assistance
in the specification of exceptional conditions. Exceptional conditions and proc-
essing must be modeled explicitly using the same notations as normal con-
ditions. Many users have overcome this problem by "customizing" the nota-
tions to permit the depiction of exceptional processing independently without
explicit control and data flow routing.

Structural Characteristics

1. Does the method provide representations that describe all elements of
the hardware system? Hatley-Pirbhai provides representation of all types of
components with the combined Requirements and Architecture Models.
Generic notations are used to depict the components graphically, while Ar-
chitecture Module Specifications describe allocation decisions and provide
traceability to the functional view. Interface diagrams and specifications pro-
vide flow allocation to specific hardware channels. Harets Module Charts pro-
vide a similar capability, although the notation is more general and their use is
not well defined. Neither Ward-Mellor nor ESML supports system structure
modeling with a distinct notation, although [Bruyn88] hints that this will be ad-
dressed in a future revision of the ESML definition, and Ward-Mellor advo-
cates the use of implementation models to depict processor components of
the system.

2. Does the method provide representations that detail the data and signal
flow between the devices? Hatley-Pirbhai and Harel have the capability to
describe data and signal flow between devices, although only the
Hatley-Pirbhai notation differentiates between the information flows and the
specific channels upon which they flow. Ward-Mellor and ESML use the same
representations as in the functional view to depict structural data and signal
flow.

3. Does the method provide modularization guidelines that account for the
need to map specific software modules onto specific hardware devices?
None of the methods provides much assistance in making allocation deci-
sions, although the structural notations supported by the methods provide an
appropriate vehicle for recording those decisions.

4. Does the method provide techniques to detect and recover from
failures? None of the methods provides assistance in defining error detection
and correction, fault tolerance, or dynamic reconfiguration.

5. Does the method provide a data modeling technique, describing all en-
tities and their relationships? Ward-Mellor specifically integrates
Entity-Relationship (E-R) diagramming into its modeling scheme.
Hatley-Pirbhai makes only passing mention of the same approach. Neither
ESML nor Harel addresses data modeling, but all four methods are entirely
compatible with E-R diagrams. While the necessity of extensive data model-
ing for many real-time systems is a matter of contention, some recent work
indicates that the use of E-R models eases transition into object-oriented de-
signs.

52 CMU/SEI-89-TR.36

C.b. Constraints

Integration and Test Constraints

1. Do the representations describe the Intended function and behavior well
enough so that separate teams can use them to test the system? All of
the methods tend to enhance communication among technical personnel
through clear and complete definition of function and behavior. In practice,
extensive training is required for full benefit to be realized. Technical walk-
throughs have been shown to be essential in effective use of these methods,
particularly in integration and testing.

2. Does the method provide representations that model the system's envi-
ronment to allow testers to develop real-world test scenarios? The ab-
stract, implementation-independent nature of these methods can be problem-
atic in most areas of testing. With the exception of higher-level verification
(e.g., "validation testing" or "functional testing"), the use of these specifications
in the derivation of test cases tends to be more of a hindrance than a help.

3. Can test teams trace from requirements through the representations to
develop test cases for modules and subsystems? Trace-based testing
can be very difficult. Each of the methods recommends maintenance of trace
tables, but none provides guidelines for their derivation. Hatley-Pirbhai pro-
vides somewhat more support of traceability at the system level than the other
models, requiring that Architecture Module Specifications contain trace infor-
mation from the functional model.

Evolution Constraints

1. Do the methods' representations provide maintainers with a "road map"
Into the Implemet. ltion that provides an overview of the system, shows
the relationship of Its parts, and allows them to focus quickly on areas of
Interest? Each of the methods provides sufficient overview context, although
in practice the functional and behavioral specifications have proved a
hindrance to maintainers because the design tends to diverge from the specifi-
cations. One developer recommended "throwing away" the requirements
specifications once a stable and accepted design has been produced, allowing
maintenance to proceed from the design description. Another recommended
conversion of the requirements models into a textual description based on
primitive specifications. Neither approach seems entirely satisfactory. Users
of structural modeling capabilities should suffer less from this problem in that
the specifications are tied directly into physical components. Further iteration
on the specifications may then map more closely to the software design.

2. Do the representations help maintainers determine the scope of effect of
a proposed change to a particular module or set of modules? Yes, as-
suming that traceability is maintained between the requirements and design
models. Each method makes scope of effect clearly visible.

3. Does the modularization technique lead to architectures that accommo-
date small changes to the system's timing requirements without major
redesign? None of the methods addresses accommodation of timing require-
ments. Hatley-Pirbhai addresses only the depiction of required response

CMU/SEI-89-TR-36 53

As 4

times, and does not address design impact of these requirements. It is a fair
assumption that use of various structural notations of each method will im-
prove change accommodation.

4. Does the method promote the notion of abstraction of hardware device
functions Into logical operations to support the replacement of devices
over time? Hare! and Hatley-Pirbhai structural notations are sufficiently ab-
stract to accommodate system component evolution.

5. Does the method provide techniques for organizing Its representations
to support the evolution of the system Into multiple versions? By them-
selves, none of the methods addresses multiple versioning; however, many
available tools support some variation on this theme.

C.c. Representations

Abstraction

1. Does the method define abstraction techniques and give guidance on
producing representations at various levels of abstraction? All of the
methods provide similar support for abstraction of data and procedures
through leveled hierarchical representation. Harets method is the only one of
the four to provide significant behavioral abstraction capability independent of
the procedural abstraction mechanism.

2. Do the abstraction techniques Include the definition of balancing rules?
Each of the methods provides a similar (and intuitive) set of balancing rules to
ensure consistency between the levels of abstraction.

Consistency

1. Does the method provide guidelines for analyzing representations to en-
sure consistency within each representation? All of the methods ensure
internal consistency through naming conventions and balancing mechanisms.

2. Does the method encourage the use of a common glossary or dictionary
to protect against naming clashes between entities? Each method pro-
vides some manner of common dictionary, flat in structure, as a mechanism
for avoiding name clashes.

3. If hierarchical representations are available, does the method encourage
the technique of using one level of representation to derive a template
for the next lower level? For all of the methods, the derivation of one level of
diagrams from another level is an integral part of the notation and techniques.
Further, many available toolsets provide some crude level of automation of
this relationship.

54 CMU/SEI-89-TR-36

Completeness
1. Does the method provide mechanisms to represent, examine, or under-

stand such things as exceptional conditions, boundary conditions, error
handling, Initialization, fault tolerance, performance, and resource
constraints? For the most part, none of the methods specifically calls out any
of these issues for examination, except inasmuch as they may be represented
through functional/behavioral/structural modeling. Some users have
employed minor customizations of the notations to accommodate depiction of
such requirements.

2. Does the method provide a mechanism to ensure that all of the require-
ments for the system have been met? None of the methods provides
mechanisms for ensuring that all requirements have been met by the
design/implementation, beyond manual tracing.

Complexity
1. Are there a manageable number of concepts expressed In a single

representation? Ward-Mellor, Hatley-Pirbhai, and ESML follow the conven-
tions of Structured Analysis in suggested limits of diagrammatic complexity.
Such limits result in diagrams that are generally manageable. Harefs lack of
guidelines is not problematic in and of itself; however, we have noted that in
practice some users introduce multiple levels of poorly-partitioned diagrams
that strain comprehension beyond practical limits. Users of Harel are well-
advised to impose complexity restrictions of their own.

2. Does the method provide techniques to partition and decompose com-
plex representations Into sets of simpler representations? Yes, all of the
methods employ similar hierarchical relationships to support "decomposition,"
although Harets behavioral approach is superior in this regard.

3. Are notations semantically and syntactically simple across represen-
tations, and are the semantics and syntax relatively simple and
straightforward to use? For the most part, all of the methods provide simple
notational syntax and semantics. Harers statecharts can be quite intricate
and perplexing to the novice. Hatley-Pirbhafs multi-sheet specifications are
similarly complex. ESML process control notations seem unnecessarily com-
plex in providing seven variations of "prompts"; it is not clear that fewer varia-
tions would not suffice. Similarly, the graphic distinction between
depletable/non-depletable stores and continuous/intermittent data flows is not
clearly of value in specifying essential requirements.

Traceability
1. Can readers of the method's representations easily determine the paths

between requirements and Implementation? Not always. Great effort must
be expended to maintain traceability across the life-cycle. Nothing inherent in
any of the notations facilitates this process. As far as the structural notations
of the methods are carried into lower levels of design, traceability if facilitated.

2. Does the method provide naming conventions for entitles across all
representations? All of the methods follow fairly standard naming conven-
tions across representations.

CMU/SEI-89-TR-36 55

3. Does the method provide notation for relating the name of an entity with
the names of its components? For information flows, the associated dic-
tionary is the primary reference for relational information. Each method pro-
vides conventions for graphically merging/splitting flows, which greatly en-
hances the representation of relationships. Hatley-Pirbhai emphasizes merg-
ing and splitting flows more than the others, and is simpler and more complete
in notation.

4. Does each level of a hierarchical representation clearly identify its parent
and children? Hatley-Pirbhai, ESML, and Ward-Mel/or each rely on a con-
ventional dot-notation numbering scheme to track hierarchical relationships.
Hare/ lacks such guidelines, which can be the source of confusion among
readers of the models, although, as with the other methods, parent/child
representations can be identified by name.

5. Does the method encourage recording and provide representations to
record the designers critical decisions, e.g., which processes and data
stores have been pulled together Into which packages and which
packages model real-world objects? Hatley-Pirbhai is the most complete in
permitting the depiction of allocation decisions at the system design level, al-
though Harel structural notations can be used similarly. Ward-Mel/or and
ESML may follow the "essential model" vs. "implementation model" derivation
approach to provide some amount of similar modeling capability. The super-
iority of any approach in this area is not clear.

6. Can a time ordered sequence of events be traced through the represen-
tations to determine the behavior of the system? Technically, event trac-
ing is possible with all of the methods, although automation is required to
make this a practical reality, Some methods presently have better automated
support in this regard than others, but we do not address automation in this
report.

View Integration

1. Does the method provide techniques for relating one view of the system
to another? All of the methods relate functional and structural views similarly,
through information flow and process controls. For the most part, the integra-
tion is smooth and intuitive. Ward-Mellor and ESML graphically depict proc-
ess controls, which many engineers find more intuitive than the implicit
relationships of Hatley-Pirbhai and Harel. Further, in Harefs approach, the
ability to manage independent functional/behavioral hierarchies is not well
documented and can cause confusion. With these, relationships are less in-
tuitive than where the behavioral model is "slaved" to the functional model.
Nearly all users of all of the methods have some difficulty differentiating be-
tween the notions of "data flow" and "control flow," but these problems are
usually alleviated with experience and local convention.

2. Can developers use the representations to determine how alternatives in
one would effect the others? None of the methods provides guidelines in
choosing alternatives, although Hat/ey-Pirbhai recommends de-emphasis of
the behavioral model in general. Such an approach can be used with any of
the methods.

56 CMU/SEI-89-TR-36

Ambiguity
1. Does the method prescribe a sequence of steps that allows developers

to leave portions of a representation temporarily Incomplete and
ambiguous? All of the methods permit the analyst to leave portions of the
models incomplete temporarily.

2. Does the method provide techniques for examining the representation to
ensure all ambiguities have been resolved? The syntax of all of the meth-
ods make checking for ambiguities and incompleteness mechanical.

3. Can various audiences examine the representations to gain an un-
ambiguous understanding of the system at the level of detail they are
Interested in? In theory, this is possible with all of the methods. In practice,
training and experience are nearly essential for all audiences involved in ex-
amination of models. Given that, an audience can focus on an appropriate
level of detail relatively easily as a result of the leveled hierarchy approach.

Duplication

1. Can you derive representations without expressing the same information
over and over again? Although only Hatley-Pirbhai addresses the topic, the
same approach can be used with any of the methods: reference is made
within the appropriate primitive specification to the duplicated material.

2. Does the method provide a representation that can be used to record the
existence and location of duplicated Information, e.g. cross reference
table? Hatley-Pirbhai recommends referencing duplicated information only in
the diagram and specification that are applicable, and does not discuss
centralizing the information in a table.

Changes

1. Does the method provide hierarchical forms for all types of
representation? Only Harel provides significant hierarchical representation
of the behavioral model. All of the methods provide hierarchical functional and
data representation.

" Can low-level changes be made without necessarily affecting high-
level representations? All of the methods permit localization of low-
level changes, or at least make clear the scope of change.

* Can high-level changes be made without affecting all lower level
representations? Although scope of change is clear for high-level
changes, it may prove difficult to localize such changes due to the top-
down model of information flow.

2. Can the repercussions of a change to higher and lower levels of a repre-
sentation be traced; across different representations? Yes, by tracing the
applicable information flow.

CMU/SEI-89-TR-36 57

C.d. Deriving Representations

Partitioning
1. Does the method provide a means of partitioning the system at all

stages? Each method provides a means of partitioning at all stages covered
by the method (i.e., none of them addresses software design partitioning
beyond the top level to any useful extent).

2. Do the partitioning techniques account for the structure of the problem
as well as the hard Implementation constraints? The functional/behavioral
aspects of all of the methods focus on depicting the problem space rather than
the solution space. The structural views of Hatley-Pirbhai and Harel focus on
system-level solution space, and perhaps to top-level software design imple-
mentation. "Implementation models" emphasized by Ward-Mellor can be de-
rived from any of the methods using the same functional/behavioral notations,
but the notations are really inadequate for detailed software design. In our
view, none of the methods are appropriate for detailed software design par-
titioning. Ward-Mellor provides more guidelines than the others in carrying the
specification into a detailed software design (using a conventional structural
design notation).

3. Are the suggested techniques flexible enough to allow experienced de-
velopers to examine the alternatives they believe are appropriate? None
of the methods provide technique3 that are more detailed than general guide-
lines and heuristics. Therefore, all are flexible enough to permit the examina-
tion of alternatives.

4. Do the techniques emphasize the need to define the interfaces between
the partitions? The techniques of all of the methods provide proper em-
phasis on interface definition.

5. Do the techniques suggest partitioning the system so that pieces are in-
dependent enough to allow Individual analysts/designers to elaborate
and refine the pieces Independently? Yes, all of the methods provide suf-
ficient technique flexibility to encourage work package distribution.

Refinement
1. Does the method guide the analyst In determining the amount of detail to

Include at each level of a representation? All but Harel provide reasonable
high-level guidelines for determining sufficient levels of detail. The lack of
guidelines from Harel sometimes results in highly detailed (design-level)
models, as well as busy and cluttered diagrams that border on the unreadable.
This problem is easily corrected with the application of project conventions.

2. Is the amount of detail consistent across levels of different
representations? Consistency is highly variable across different analysts, al-
though experience and training tend to increase consistency. This is true for
all of the methods.

58 CMU/SEI-89-TR.36

Evaluation of Alternatives

1. Does the method allow the designer some flexibility when making design
decisions? Each method, used properly, gives maximum flexibility to the
designer. An appropriate specification will define only essential requirements
and design constraints. In practice, users find all of the methods difficult in
terms of identifying the appropriate point at which to cease analysis. This puts
the onus on the designer to interpret the specification not as a design struc-
ture, but purely as an abstract model of requirements.

2. Does the method encourage the designer to generate a number of alter-
native designs? Not specifically, nor do the methods hinder alternative de-
signs, although many designers may improperly interpret the specifications as
the imposition of design structure restrictions where the analysis did not so
intend.

3. Does the method help the designer evaluate alternative representations
based upon system characteristics and constraints? None of the meth-
ods provides techniques to the designer to aid in evaluation of alternative
representations; however, the clear, graphic depiction of requirements and
constraints makes the task more visible.

C.e. Examining Representations

Feasibility

1. Does the method provide techniques to examine its representations, in-
cluding operational prototypes, to assess risk and gauge feasibility? By
themselves, the methods do not provide much assistance in the examination
of representations for feasibility. Coupled with its automated toolset, however,
Harefs method places a heavy emphasis on model execution and prototyping.
Automated tools supporting the other methods are being extended to include
similar capabilities. We have not examined any of these automated capabil-
ities; however, many users of the methods have incorporated prototyping into
their development process. These users have reported that they find the
methods compatible with an early prototyping process.

2. Does the method encourage identification of high risk items and their in-
cremental development? None of the methods specifically addresses risk
identification and analysis, although their partitioning strategies would be sup-
portive of a risk analysis process.

Conformance

1. Does use of the method lead to a spec) tion that clearly and com-
pletely defines the desired operational characteristics of the system un-
der development? Yes. All of the methods may be used to clearly and com-
pletely define the functional and behavioral characteristics of the system under
development. Other types of operational requirements/design constrairn are
not captured with any formality. In general, users capture them in the tu~tual
portion of the specification as an adjunct to the graphic models.

CMU/SEI-89-TR-36 59

2. Does the specification serve as a model of the system that can be under-
stood by the customer and end user to Insure the system under devel-
opment will meet their needs? Not usually. Users of the methods have
reported that the models do not directly improve communications with the cus-
tomer. Understanding the models requires nominal training in the notations
and technical walkthroughs. If the customer agrees to these conditions, the
models can be used for communication with limited success.

3. Does the method help determine what questions should be asked during
the examinations for conformance? Not specifically.

4. Does the method provide guidance In developing test cases by speci-
fying which tests should be developed? Not specifically.

Safety

1. Do the method's representations descrioe the operation of the complete
system, Including software, hardware, human operators, and environ-
mental conditions? Ail of the methods can be used to describe all system
components in an abstract fashion. Only Hatley-Pirbhai and Harel provide the
distinct system design notations to describe the system components in a more
concrete fashion.

2. Does the method provide techniques to Inspect the behavior of the sys-
tem under exceptional conditions In the environment? Not specifically.
The methods provide the notational components needed for defining excep-
tional behavior, but lack techniques for inspection.

3. Does the method provide specific guidelines for examination of safe
operations, e.g., determining If the human operator Is warned If he is
taking actions leading to hazardous conditions? Not specifically. The
analysts must determine which scenarios are critical and exercise the func-
tional and behavioral models accordingly to determine safe operation.

Walkthroughs and Inspections

1. Is the syntax for each representation clearly defined so reviewers can
quickly locate and dispense with problems with form? For the most part.
The graphical components of each method are clearly defined syntactically.
None of the methods provides specific syntactic guidelines for primitive speci-
fications. Each project or organization must define standards for confor-
mance. The methods require only data/control flow balance.

2. Does the method provide specific guidelines for reviewing the
representations? Hatley-Pirbhai provides some minimal guidelines for con-
ducting walkthroughs and inspections of the representations. The other meth-
ods do not specifically address the issue.

60 CMU/SEI-89-TR-36

Analysis

1. Does the method provide techniques and a clear set of rules for static
analysis of its representations? All of the methods are supportive of similar
static analysis of syntax and balancing rules.

2. Is the syntax of the representations well defined, allowing the purchase
or development of automated tools to perform static analysis? The
graphical portion of each method is well-defined syntactically. Harets defini-
tions are substantially more formal and complete than the others.
Hatley-Pirbhai provides an excellent summary of notational components re-
quired for complete automated support of their method [Hatley88].

3. Does the method support the animation or simulation of its represen-
tations to allow dynamic analysis early In the development cycle? Harel
has clearly invested more effort in defining the required formalism to support
dynamic analysis than the other methods. Automated support for dynamic
analysis and related capabilities is more mature for Harel models than the
others. Ward-Mellor, and by extension ESML, discusses semantics exten-
sively in [Ward86]. Hatley-Pirbhai has not addressed the issue of formally de-
fined semantics. The extent to which Hatley-Pirbhai models may be dynami-
cally analyzed is unclear. For all of the methods, it should be noted that
dynamic analysis tends to focus on the behavioral models (which are syntac-
tically more formal), and not the primitive functional models.

Testing

1. Can the specification be used to develop test scenarios that exercise the
system under both normal and exceptional operating conditions? Not
easily. None of the methods provides a solid basis for most levels of testing.
Possible exceptions are high-level functional testing and validation testing.
The models tend to be too abstract and distant from the implementations to be
useful for lower levels of testing. A more common approach is to follow re-
quirements through trace tables to design documentation, which can then
serve as the basis for lower level test scenarios.

2. Does the method provide a technique for using the behavioral represen-
tation to generate behavioral tests? Not specifically, although all of the be-
havioral model notations provide a sound basis for generating behavioral
tests. Tabular notations are perhaps more straightforward in this regard.

C.f. Management Characteristics

Process

1. Does the method provide planning techniques that lead to milestone
definitions and project plans that are consistent with use of the method
and the Implementation language? Not specifically, although the methods
support commonly accepted life-cycle elements.

2. Are representations clear and easy enough to understand to be used for
design reviews? Yes. The representations produced from all of the methods

CMU/SEI-89-TR-36 61

provide a good basis for technical design reviews. All reviewers must be
trained in interpretation of the representations, however, and the availability of
both domain expertise and methods expertise at the reviews provides max-
imum benefit from the effort.

3. Can representations be used to comprise deliverables? No, the represen-
tations from these methods do not constitute complete documentation by
themselves, although they can form the technical core of deliverables. Sup-
porting textual documentation, and appropriate figures and diagrams (e.g.,
block diagrams) are essential for a proper level of communication to the cus-
tomer.

4. Does the method help partition the system Into manageable pieces that
can be given out to individuals? All of the methods are supportive of work
package partitioning.

Cost

1. Are there a number of automated tools on the market that support the
method? At present, Ward-Mellor and Hatley-Pirbhai enjoy the widest variety
of support, with several vendors supporting some portion of one or both of the
methods. Support for these methods is available on most major platforms,
including most workstations and personal computers. From our observation,
none of the presently available automation completely supports these meth-
ods. Hare/is presently supported by only one vendor; however, this product
supports the Harel method in its entirety, with extensive simulation, dynamic
analysis, and prototyping capabilities. The variety of supported platforms is
limited but expanding. At present, ESML is not specifically supported by auto-
mated tools, although limited support can be achieved through use of some of
the Ward-Mel/or and Hatley-Pirbhai tools. At least one vendor is developing
an ESML toolset at this time, complete with animation capabilities.

2. Does the method require a reasonable amount of training, that is propor-
tionate to Its power, and feasibility of use? Successful users of these
methods have acquired at least one week of training in method application,
plus additional training in use of automated tools. Users have also stated con-
sistently that follow-up consultation with a method expert is almost essential to
success. Such an expert should be available for informal questions as well as
formal reviews. We also observed that method and tool training by itself
seems much less effective with those lacking sufficient education, training, or
experience in software engineering concepts and issues in general.

3. Does use of the method reduce product life-cycle costs by an amount
that Is worth the cost of adopting the method? This question cannot be
answered definitively without reliable metrics. No such metrics are available.
Organizations that we have interviewed have stated that for the most part no
savings were realized in front-end development (although a shift of effort from
coding/integration/test to specification and design was frequently noted). Most
interviewees described noticeable reductions in integration time and cited fa-
cilitated maintenance. Integration was improved primarily as a result of rigor-
ous interface definition, while maintenance was improved as a result of "better
software." We also note, however, that interviewees did not, in general, con-
sider the method representations themselves to be beneficial to the mainte-
nance process. Among the projects that we examined, we noted that devel-

62 CMU/SEI-89-TR-36

opers felt that smaller projects gained less benefit from the use of the meth-
ods.

4. Can the method be adapted for use: across a broad range of applica-
tions domains, with a variety of Implementation languages, with confor-
mance to a variety of standards? All of these methods are general-purpose
in nature and are applicable to a wide variety of application domains. We
have noted some level of customization for each domain, as well as each par-
ticular project. The implication is that a high degree of flexibility in notation
and technique is beneficial.

C.g. Other Issues
1. What issues does the method not deal with? None of the methods deals

with software or hardware design. None of them deals in any depth with verifi-
cation or maintenance issues. None of them provides a particularly smooth
transition to design notations. None of the methods provides formal
mechanisms for depiction of non-functional/behavioral/structural requirements.

2. What are the negative consequences of using the method to solve a par-
ticular problem? The primary technical negative consequence of using any
of these methods is that maintenance of the resulting specifications is cumber-
some, and occasionally detrimental to the development effort. In particular,
where the requirements specifications diverge sharply from the design specifi-
cations, duplicated effort can be a problem.

Experienced Personnel

1. Can experienced staff members use the method to capture and repre-
sent what they believe to be the key functional, behavioral, and struc-
tural characteristics of the system at all stages of development? For
each of the methods, maximum leverage is gained from experienced person-
nel. Although in concept the software design is not constrained by the par-
titioning strategy used in the functional/behavioral models, greater experience
leads to more elegant, understandable specifications. Inexperienced users
may become entrapped in indecision over minor semantics, trivial partioning
issues, and differentiation between data and control. Experienced users rec-
ognize more readily that a large percentage of such issues are not of signif-
icance, and decisions may be more or less arbitrary. Further, experienced
personnel can effectively use the representations of the model to direct work
packages to less experienced personnel, and as leverage to resolve integra-
tion issues.

2. Can less experienced staff members use the rules and guidelines
prescribed by the method to develop elaborations and refinements of the
high-level representations? The extent to which less experienced staff can
effectively use the methods is limited. As a minimum, a certain level of train-
ing is required (at least one week) to enable all staff members to communicate
at a consistent level. Once analysis is initiated, several weeks of trial and er-
ror may be required, with guidance from an experienced consultant, before an
efficient level of confidence is gained. Once this level of effectiveness is

CMU/SEI-89-TR-36 63

achieved, these staff members can effectively elaborate abstract work
packages to consistent detail and to uncover gaps and weaknesses in the
work products of their peers.

Transformation Across Stages

1. Can developers use the method to represent the system under develop-
ment at all stages? Not effectively. The target of these methods is require-
ments specification and, especially in the case of Hatley-Pirbhai and Harel,
system design as well. We feel that these are the only developmental stages
for which these techniques are appropriate. In particular, we believe that they
are insufficient for deriving and capturing detailed software design, in that the
notations cannot depict the wide variety of constructs of the solution space
necessary for efficient implementation. Using appropriate transformation tech-
niques, they may be used effectively with other software design techniques,
such as variants on structured design and object-oriented design.

2. Are developers, using the method, supported by a set of transformation
rules or guidelines that allow them to transform the representations at
one stage to those of the next? Yes, within the limitations of the preceding
question. Hat/ey-Pirbhai provides transformation guidelines between their
functional/behavioral model and structural model. Ward-Mellor provides trans-
formation guidelines between their "essential model" and "implementation
model"; these could be applied to ESML as well. Harel does not provide spe-
cific transformation guidelines between his functional/behavioral models and
structural model, although an approach similar to that of Hatley-Pirbhai might
be used. None of the methods provides extensive guidelines in transformation
to software design. Transformation techniques described for Structured Anal-
ysis to Structured Design may be used with minor modification, as described
by Ward-Mellor. Similarly, a number of object-oriented transformation tech-
niques have been proposed recently (see [Bulman88] and [Seidowitz87] for
examples).

" Do the rules prescribe a transformation process that is relatively
automatic? Available transformation techniques (see above) are rela-
tively automatic only for the derivation of "first cut" designs. Further
restructuring and refinement requires appropriate expertise in design
and domain-specific issues.

* Do the entities and structures created at one stage of development
remain visible and Intact at the next stage? Not always. While the
"first cut" design may retain the bulk of structures in the requirements
specification, successive design modifications may result in extensive
repartitioning of process and data structures.

" Does a representation continue to serve a useful purpose after the
representation for the next stage Is completed? Not always. When
integrated with a structural modeling technique, there is a greater likeli-
hood that the system/software requirements specification will continue
to be useful throughout subsequent development and maintenance, but
only if traceability is maintained and is fairly direct. Barring this, the re-
quirements specification may become nearly useless, or even detrimen-
tal, to subsequent development.

64 CMU/SEI-89-TR-36

Large-Scale Problems

1. Can developers use the method to partition the problem Into a set of
smaller problems with well defined Interfaces and Integrate the results?
For the most part, the methods scale-up well, with the exception of some of
the behavioral notations (particularly conventional state-transition diagrams).

" Does the method provide hierarchical representations that allow
developers to work at a detailed level and easily remember the
overall context? In general, yes. The behavioral notations of
Hatley-Pirbhai, ESML, and Ward-Mellor for the most part are not hierar-
chical by themselves. When slaved to the functional view, they obtain
sufficient hierarchical features for scale-up. Because of their emphasis
on state-transition diagrams, Ward-Mellor tends to be more difficult to
scale up due to state/transition explosion. Partitioning these diagrams
to reduce the problem is difficult and awkward. By contrast, tabular for-
mats (such as those used by Hatley-Pirbhai and ESML) can be ex-
tended fairly arbitrarily. For many scenarios, Harets hierarchical
statecharts are the best solution of all. Ideally, one should be able to
choose any mix of the available representations that best meets the
needs of a given situation.

" Are the rules used for partitioning and decomposing one view con-
sistent with the rules for other views? For example, if the method
supports data flow and control flow, are they dealt with at com-
patible levels? All of the methods are internally consistent in terms of
decomposition rules.

* Does the method endorse naming conventions that allow multiple
developers to integrate their results and avoid naming clashes?
All of the methods employ a flat name space, rather than attempting to
incorporate a notion of scope. This can be problematic for large-scale
systems. A solution that can be employed by automated tools is a
scope-specific name space.

User Interface

1. Does the method provide representations that allow the user to visualize the
user interface?

" Do the representations adequately represent what the user will
see, content and format of displays? No; however, some of the
available automated tools include a front-end tool that can be used for
modeling the user interface.

" Do they allow representation of user Inputs, content and format?
No.

Do they allow the user to visualize a dialogue with the system, the
ability of the user to modify the displays and the mechanics of the
Interactions? No.

2. Does the method promote the partitioning of user Interface processing
from other processing? In general, no. Hatley-Pirbhals structural modeling

CMU/SEI-89-TR-36 65

notations do differentiate between user interface and other components, but
this is from an architectural viewpoint rather than processing. It is not clear
that this is sufficient.

Method Documentation

1. Does the developer of the method provide sufficient documentation on
the syntactic and semantic conventions of the method? Hare ([Harel87],
[Harel88a], [Harel88b], [i-Logix87], [i-Logix89a]) focuses heavily on syntactic

and semantic rules for the behavioral notations, and to a much lesser degree
for the functional and structural components. Hatley-Pirbhai
[Hatley87] provides substantial documentation of the functional and be-

havioral aspects, and sufficient (though not extensive) coverage of the struc-
tural component. Ward-Mellor[Ward85] provides adequate discussion of the
syntax and semantics of the functional and behavioral components of the
method. ESML [Bruyn88] is brief, but, used in conjunction with Ward-Mellor
documentation, is manageable.

2. Does the developer of the method provide practical assistance in the ap-
plication of the notations and techniques to actual problems? The
Hatley-Pirbhai text is superior in its treatment of practical application. Clearly,
it is written by practitioners for practitioners, with a wealth of guidelines and
rules-of-thumb that should be applicable to a wide audience. As a practical
reference work, the Ward-Mel/or texts are somewhat less satisfying in style,
format, a;id content, although many useful insights are provided. The Harel
documentation consists of a distributed group of papers, manuals, and publi-
cations which do not constitute a satisfactory reference work for the practitio-
ner. De-,,ation guidelines are particularly sparse. The ESML paper provides
a discuss:,n only of the graphical language and does not delve into guidelines
or techniques for derivation or examination, or hints for the practitioner. For
such ink rmation, ESML refers users to [Ward85]. Insofar as many of the
notations and techniques of these methods may be intermixed, the documen-
tation for each method may be applied to the other methods.

3. Does th, developer provide good examples that can be used to clarify
methodological Issues? Hatley-Pirbhai provides a few small-scale ex-
amples t' at are of some limited value. Fragmented examples from actual sys-
tems (av onics) can be found throughout and are valuable. Ward-Mellor also
provides a few small-scale examples of limited value, but lacks significant
realistic Lxamples found in the Hatley-Pirbhai text. Harel relies primarily on
very limi* . d examples and mainly for behavioral notations. A more complete
example)f the Harel approach may be found in [i-Logix89b]. The ESML
paper provides very few examples.

66 CMU/SEI-89-TR-36

Appendix D: Comments From Methodologists
This appendix provides brief critiques of this report from methodologists representing the
ESML, Harel. Hatley-Pirbhai, and Ward-Mellor methods.

D.a. ESML
The following information was submitted by Paul Carpenter, a member of the ESML Work-
ing Group.

The Extended Systems Modeling Language (ESML) is a new modeling language
based on the Ward-Mellor and Hatley Structured Methods. ESML is a graphics-
based language that supports system and software modeling techniques such as:
functional decomposition, data-driven, event-driven, object-oriented, and architec-
ture modeling. ESML focuses on the analysis, design, and specification activities
of the development life cycle, and the ESML working group is currently writing
formal definitions for extended data flow diagrams, control specifications, informa-
tion models, and architecture models.

The ESML working group was formed after the 12th Structured Methods Con-
ference in 1987, by a number of conference attendees interested in modeling lan-
guage standards. The goal of the ESML working group is to develop extensions
and modeling language standards for Structured Methods. The ESML working
group consists of representatives from industry, CASE vendors, and independent
consultants, who meet four times a year. ESML extended data flow diagrams and
control specifications have been published in two journals and have been dis-
cussed at a number of CASE conferences. The mailing list of persons interested
in ESML exceeds 300, and one open meeting has been held. Another open
meeting will be scheduled in 1990.

Current members of the ESML working group are:

Bill Bruyn Index Technology Corporation
Paul Carpenter Honeywell, Inc.
Derek Hatley Smiths Industry
Randy Jensen Hughes Aircraft
Paul Jorgensen Research & Technology Institute of W. Michigan
Ted Liu Athena Systems
Jess Thompson Nastec
Steve Tockey Boeing Commercial Airplane Company
Steven Weiss Wayland Systems

Paul B. Carpenter Staff Engineer, Software Technology
Honeywell Inc.
Air Transport Systems Division
Sperry Commercial Flight Systems Group
21111 North 19th Avenue
Phoenix, Arizona 85027

CMU/SEI-89-TR-36 67

D.b. Harel

The following comments were submitted by David Harel.

We appreciate the opportunity to address some points that fall outside the scope
of the report but may be of interest to its readers.

The Harel method and its supporting toolset, Statemate, were developed as one;
the method's strength is best appreciated in this context. As implemented in
Statemate, the visual languages of the Harel method are used to create an ex-
ecutable model. Several of the report's categories for comparison take on new
meaning when considered in this light.

For example, examining a representation is quite a different thing when it can be
done with automated support. Statemate provides step-by-step interactive execu-
tion, programmable batch execution, and exhaustive testing. This allows the user
to perform extensive analysis to determine whether the system as specified will
behave as intended.

As another example, the report suggests that all the methods surveyed are weak
in their ability to serve as a communication vehicle between developers and non-
technical customers. However, the Statemate model can be automatically trans-
lated into prototype code, which can be used to drive a graphical representation of
the system, such as a control panel. The panel can be manipulated by users or
customers, providing an excellent means for communication.

Similar points can be made about the report's mentions of verification, traceability,
testing, and the resolution of ambiguous system descriptions.

We would also like to emphasize a point made in the report that may not have
been clear to all readers. Because all of the methods des.-ribed belong to the
family of real-time structured analysis, the derivation techniques developed for
one method apply equally well to the others. We encourage users of our method
to adopt the excellent guidelines developed and described by Ward-Mellor and
Hatley-Pirbhai.

Professor David Harel
Department of Applied Mathematics and Computer Science
The Weizmann Institute of Science
Rehovot, Israel 76100

68 CMU/SEI-89-TR-36

D.c. Hatley and Pirbhai

Derek Hatley and lmtiaz Pirbhai submitted the following comments:
We appreciate the SEi's efforts to bring some objectivity to this hotly debated field,
and especially their approach of biting off just a digestible chunk, rather than trying
to chew on the whole methods arena. We feel that their coverage of our particular
methods is fair as far as it goes, but only covers in depth those areas that are
common with the other methods. Below we summarize our underlying methods
philosophy, how our methods extend well beyond the above common areas, and
the current CASE tool situation.

Our background in practical systems development tells us that practitioners are
not interested in methods for their own sake; they are interested in them only as
tools to get a job done. A method whose use approaches the complexity of the
system it seeks to model is not doing us any favors. Furthermore, no one can
foresee all the needs of the myriad possible methods applications, so it is inappro-
priate to provide special notations for any particular subset of those needs. And
finally, we build systems, not just software.

Accordingly, we devised the requirements and architecture methods as simple
and flexible means for supporting total systems development, rather than just soft-
ware. The methods produce comprehensive systems models that are independ-
ent of any particular hardware or software technology or language; they simply
provide a framework which can be adapted to the needs of the system at hand.
They include a set of heuristics for gathering information and building the models,
with a minimum number of symbols and constructs; their only constraints are
those necessary to ensure consistency and traceability.

We are pleased that our methods have been widely accepted, and that several
CASE tool developers have chosen to support the requirements method, but we
are sorry to report that none of them so far supports it completely or correctly.
Our advice to CASE tool users is to evaluate a tool carefully against the definitions
of the methods in which they are interested--the claims of the developer may not
be borne out in practice. It is unfortunate too that no CASE tool yet supports the
architecture method, even though many systems developers are using it. This
method provides a vehicle for tools to truly work at the system level over the full
systems development lifecycle, and potentially to integrate with Computer Aided
Engineering (CAE) tools, a combination which we believe will eventually be es-
sential.

Derek J. Hatley Smiths Industries
Aerospace and Defense Systems
SLI Avionics Systems Corp.
4141 Eastern, SE
Grand Rapids, MI 49518-8727

Imtiaz Pirbhai Systems Methods, Inc.
900 Summit Avenue East
#302
Seattle, WA 98102

CMU/SEI-89-TR.36 69

D.d. Ward and Mellor

The following are comments submitted by Paul Ward and Stephen Mellor, respectively.
I agree with nearly all your recommendations. However, I disagree with your in-
clusion of notational simplicity, but not well-defined semantics, in your set of gen-
eral discriminating factors in the Executive Summary. Well-defined semantics is
fundamental; its basis is not merely automated execution, but the availability to
express unambiguously the nature of the proposed system. Simplicity is a valid
figure of merit only from a solid semantic baseline. Calling a method "simple,"
when the method lacks the ability to express important distinctions, is not a com-
pliment. Although I work with all four notations in my teaching/consulting practice,
I prefer Harel and ESML because they combine modeling power and well-defined
semantics.

Dr. Paul Ward Software Development Concepts
424 West End Avenue
Suite 11E
New York, NY 10024

The report omits any discussion of the techniques used to derive an analysis; for
example, functional decomposition vs. event-response. Conclusions are drawn
without clear explication of the reasoning used. The report appears to be already
out of date. The most popular method, according to the survey in the report, is
Object-Oriented Analysis. OOA, as described in An Object-Oriented Approach to
Domain Analysis, Software Engineering Notes, ACM Press, July 1989 (Shlaer and
Mellor of Project Technology, Inc.), uses a simple, rigorously defined notation
coupled with a strong formalism providing effective guidelines for systems anal-
ysis. Since the report concludes that there are few significant differences between
t;ie four methods surveyed, and OOA has become very popular over a short
period of time, I would urge readers of the report to investigate OOA.

Stephen J. Mellor Project Technology, Inc.
2560 Ninth Street
Suite 214
Berkley, CA 94710

70 CMU/SEI-89-TR-36

A11

Appendix E: Glossary
animation: The continuous display of the current status of a simulation by visually high-
lighting the active elements in the specification.

CASE: Computer aided (or assisted) software (or system) engineering.

dynamic analysis: The computerized testing of the behavior of a system under develop-
ment based on its specification. This analysis is done by searching for specific behavioral
properties of the proposed system.

ESML: Extended Systems Modeling Language, a specification notation described in
[Bruyn88].

executable specification: A description of the required behavior for a system under devel-
opment that can be syntactically and semantically checked and run by a computer.

Harel: The method described in [Harel88a], [Harel88b], [i-Logix89a], and elsewhere, often
called statemate after the name of the supporting toolset, or statecharts, after the name of
the methods behavioral languages.

Hatley-Pirbhai: The method described in [Hatley87].

method: A systematic approach to solving a given problem. A method consists of some
combination of notations and techniques. See the discussion in Section 2.5 of this report.

methodology: A collection of methods that together can be used to solve a problem
(alternatively, the study of methods) [Webster85].

notation: Some combination of graphical, textual, or tabular representations used to de-
scribe the solution to the problem at hand.

process: A set of actions, tasks, and procedures that when performed or executed obtain a
specific goal or objective.

real-time: Pertaining to the processing of data by a computer in connection with another
process outside the computer according to time requirements imposed by the outside proc-
ess [IEEE83].

RFP: Request for Proposal.

SEM: System Engineering Methodology; the method described in [Wallace87].

semi-formal: A notation or technique that constrains the engineer such that the progres-
sion of activities and the resulting products follow orderly and planned patterns; semi-formal
methods may include components that are formal and components that are informal.

CMU/SEI-89-TR-36 71

simulation: The process of a computer executing the specification of a system under devel-

opment. This simulation shows (via animation or reports) how the system under develop-

ment would operate if built according to the specification.

software design: The creative and mechanical process by which the solution to a specified

software problem is attained. A software design is usually manifested in an allocation of
requirements to interacting software modules and the definition of their interfaces. Compare

to system design.

software engineering: The systematic approach to the development, operation, mainte-

nance, and retirement of software [IEEE83I.

software engineering process: The total set of software engineering activities needed to

transform a user's requirements into software. The process of applying engineering prin-
ciples to produce software.

software engineering process group (SEPG): A group of specialists concerned with the

software engineering process used by an organization. The SEPG defines and documents
the software process, establishes and defines process metrics, supports project data gather-
ing, assists projects in analyzing data, and advises management on areas requiring further
attention.

software process: A process performed to produce, support, maintain, and enhance soft-
ware. Examples of a software process are a software development process, a software
maintenance process, etc.

software requirements specification: The process and product of determining and defin-
ing the requirements for a software component of a system.

specification: The process and product of determining and defining all requirements for a
given component in a system under development. In the context of a software component,
the complete specification might include system requirements specification, system design,
and software requirements specification.

state of the practice: The commonly accepted level of use of applied scientific or engi-
neering knowledge at a particular time.

system design: The process by which a solution to a specified system problem is attained.
A system design usually is manifested in allocations of requirements to software, hardware,
and other components, and the logical and physicdl interfaces between those components
are defined. Compare to software design.

system requirements specification: The process and product of determining and defining

all requirements for a system under development at the most abstract level.

tool: A product, usually automated, that supports some engineering activity (such as a
method).

72 CMU/SEI-89-TR-36

toolset: A group of tools that support several engineering activities (such as a set of meth-
ods or a methodology).

Ward-Mellor: The method described in [Ward85].

CMU/SEI-89-TR-36 73

74 CMU/SEI-89-TR-36

Bibliography
[Alford77] Alford, M.

A Requirements Engineering Methodology for Real-Time Processing Re-
quirements.

IEEE Transactions on Software Engineering SE-3(1):pp. 60-69, 1977.

[Bailin89] Bailin, S.
An Object-Oriented Requirements Specification.
Communications of the ACM32(5):pp. 608-623, May, 1989.

[Bergland8l] Bergland, G.D.
A Guided Tour of Program Design Methodologies.
Computer 14(1 0):pp. 13-37, October, 1981.

[Blank83] Blank, J. and Krijger, M.
Software Engineering: Methods and Techniques.
John Wiley and Sons, New York, 1983.

[Booch83b] Freeman, P., and Wasserman, A. (editors).
Object-Oriented Design; In Tutorial: Software Design Techniques.
IEEE Computer Society Press, Washin. ...n, DC, 1983.

[Brooks87] Brooks, F. P.
No Silver Bullet, Essence and Accidents of Software Engineering.
IEEE Computer 20(4), April, 1987.

[Bruyn88] Bruyn, W., Jenson, R., Keskar, D., Ward, P.
ESML: An Extended Systems Modeling Language.
ACM Software Engineering Notes 13(1):pp. 58-67, January, 1988.

[Buhr84] Buhr, R.J.A.
System Design with Ada.
Prentice-Hall, Inc., Englewood, Cliffs, NJ, 1984.

[Bulman88] Bulman, D.
Model-Based Object-Oriented Design for Ada.
Course Notes.
Pragmatics, Inc., Waikoloa, HA.

[CECOM89] Gerichten, L., et al.
Software Methodology Catalog, Second Edition.
Technical Report C01-091JB-0001-01, Teledyne Brown Engineering,

Eatontown, New Jersey, March, 1989.
Prepared for U.S. Army Communications - Electronics Command

(CECOM).

[Chen76] Chen, P.P.
(he Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems 1 (1):pp. 9-36, March, 1976.

CMU/SEI-89-TR 36 75

[Cherry87] Cherry, G.
Introduction to PAL and Pamela I1: Process Abstraction Language and

Process Abstraction Method for Embedded Large Applications
P.O. Box 2429, Reston, VA 22090, 1987.

[Davis88] Davis, A.
A Comparison of Techniques for the Specification of External System Be-

havior.
Communications of the ACM 31 (9):pp. 1098 - 1115, September, 1988.

[DeMarco78] DeMarco, T.
Structured Analysis and System Specification.
Yourdon, Inc., New York, 1978.

'DOD82] Ada Joint Program Office.
Ada Methodologies: Concepts and Requirements.
Technical Report, Department of Defense, November, 1982.

rDSB87] Brooks. F., et al.
Report of the Defense Science Board Task Force on Military Software.
Technical Report, DSB, Office of the Under Secretary of Defense for Ac-

quisition, Washington, D.C., September, 1987.

arirey85] Fairley. R.
Software Engineering Concepts.
McGraw Hill. New York, 1985.

[F 8 71 Firth, R., Mosley, V., Pethia, R., Roberts, L., Wood, W.
A Classification Scheme for Software Development Methods.
Technical Report CMU/SEI-87-TR-41, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, November, 1987.

[Fioyd86] Floyd, C.
A Comparative Evaluation of System Development Methods.
In Olle, T.W., Sol, H. G., and Verriijn-Stuart, A. A. (editors), Information

Systems Design Methodologies: Improving the Practice. North-
Holland, 1986.

[Gane79] Gane, C., and Sarson, T.
Structured Systems Analysis: Tools and Techniques.
Prentice-Hall, 1979.

[Griffiths78] Griffiths, S. N.
u,..,,gn Methodologies - A Comparison.
Structured Analysis and Design ll:pp. 133-166, 1978.

[Hare187] Harel, D.
Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8:pp. 231-274, 1987.

[HareI88a] Harel, D.
On Visual Formalisms.
Cormimunications of the ACM 31(5):pp. 514-530, May, 1988.

76 CMU/SEI-89-TR-36

[Hare188bl Harel, D., Lachover, H., Naamad, N., Pnueli, A., Politi, M., Sherman, R.,
and Shtul-Trauring, A.
Statemate: A Working Environment for the Development of Complex

Reactive Systems.
In Proceedings of the Oth IEEE International Conference on Software

Engineering, pages 396-406. IEEE Computer Society, April, 1988.

[Hare1891 Harel, D. and Rolph, S.
Modeling and Analyzing Complex Reactive Systems: The Statemate

Approach
i-Logix, Inc., Burlington, MA, 1989.
Presented at AIAA Computers in Aerospace Conference, Monterey, CA.

[Hatley871 Hatley, D., and Pirbhai, I.
Strategies for Real- Time System Specification.
Dorset House, New York, 1987.

[Hatley88] Hatley, D.
CASE Tool Evaluation: A Real-Time Example.
In Proceedings from CASES/ADE 88, pages 67-87. Digital Consulting,

Inc., Washington, DC, July, 1988.

[Heninger8O] Heninger, K., et al.
Specifying Software Requirements for Complex Systems: New Tech-

niques and Their Application.
IEEE Transactions on Software Engineering, June, 1980.

rHcza39] Hoza, B., Smith, M., TocKey, S.

An Introduction to Object-Oriented Analysis.
In Proceedings of STA5, pages 312-330. Structured Techniques Associ-

ation. Chicago, IL, May, 1989.

[Humphrey87] Humphrey, W.
Characterizing the Software Process: A Maturity Framework.
Technical Report CMU/SEI-87-TR-1 1, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1987.

[i-Logix87] i-Logix, Inc.
The Languages of Statemate
i-Logix, Inc., 22 Third Ave., Burlington, MA, 1987.

[i-Logix89a] i-Logix, Inc.
The Statemate Approach to Complex Systems
i-Logix, Inc., 22 Third Ave., Burlington, MA, 1989.

[-Logix89b] i-Logix, Inc.
Statemate by Example.
i-Logix, Inc., Burlington, MA, 1989.

1IBM88] Locke, C., Vogel, D., Lucas, L.
Generic Avionics Software Specification.
Draft specification for Naval Weapons Center, China Lake, CA.
IBM systems Integration Division, Owego, NY.

CMU/SEI-89-TR-36 77

[IDA87] Fife, D., et al.
Evaluation of Computer-Aided System Design Tools for SDI Battle

Management/C3 Architecture Development.
Technical Report Draft Report 871204, Institute for Defense Analysis,

December, 1987.

[IEEE83] The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standard Glossary of Software Engineering Terminology.
Technical Report ANSI/IEEE Std. 729-1983, IEEE, February, 1983.

[Jackson83] Jackson, M.
System Design.
Prentice-Hall, Englewood Cliffs, NJ, 1983.

Jen seonS QJenson, R.
Effective Use of CASE in an Organization.
In Proceedings from CASES/ADE 88, pages 89-113. Digital Consulting

Inc., Washington, DC, July, 1988.

[Ke eyS7] Kelley, J.
A Comparison of Four Design Methods for Real-Time Systems.
Research paper supported by a NASA/ASEE fellowship at JPL, CA.
1987

PLefkovit:82] Lefkovitz, D., and Hill, H.
The Applicability of Software Development Methodologies to Naval Em-

bedded Computer Systems.
Technical Report, University of Pennsylvania , November, 1982.

[Mannino871 Mannino, P.
A Presentation and Comparison of Four Information Systems Develop-

ment Methodologies.
ACM Software Engineering Notes 12(2):pp. 26-29, April, 1987.

[PctersT71 Peters, L. and Tripp, L.
Comparing Software Design Methodologies.
Datamation 23(11):pp. 89-94, November, 1977.

[Ross77] Ross, D. T.
Structured Analysis (SA): A Language for Communicating Ideas.
IEEE Transactions Software Engineering SE-3:pp. 16-34, January, 1977.

[Shlaer88] Shlaer, S., and Mellor, S.
Modeling the World in Data.
Prentice-Hall, New York, 1988.

[Sedowitz87] Seidowitz, E., and Stark, M.
Towards a General Object-Oriented Software Development Methodology.
Ada Letters 7(4):pp. 64-67, July/August, 1987.

ISPS88] Comer, E., Donaldson, C., and Dyson, P.
Computer-Aided Systems/Software Engineerin (CASE) Evaluation for

Time-Critical Applications.
T uuiriudi Repurti, Sutware Productivity Solutions, under Contract

N62269-86-C-0415, Melbourne, FL, April, 1988.

78 CMU/SEI.89-TR-36

[STARTS87] U.K. Department of Trade and Industry.
The STARTS Guide.
NCC Publications, National Computing Centre, Oxford Road,

Manchester, UK, 1987.
Prepared by the industry with the support of the DTI, NEDO and NCCC.

[Wallace87] Wallace, R., Stockenberg, J., Charette, R.
A Unified Methodology for Developing Systems.
McGraw-Hill, New York, 1987.

[Ward85] Ward, P., and Mellor, S.
Structured Development for Real-Time Systems.
Yourdon Press, Prentice Hall, New York, 1985.

[Ward86] Ward, P.
The Transformation Schema: An Extension of the Data Flow Diagram to

Represent Control and Timing.
IEEE Transactions on Software Engineering 12(2):pp. 128-210,

February, 1986.

[Ward89a] Ward, P.
Embedded Behavior Pattern Languages: A Contribution to a Taxonomy

of CASE Languages.
The Journal of Systems and Software 9(2):pp. 109-128, February, 1989.

,Ward39b] Ward, r.
How to Integrate Object Orientation with Structured Analysis and Design.
IEEE Software :pp, 74-82, March, 1989.

[Webster85] Dictionary.
Webster's Ninth New Collegiate Dictionary.
Merriam-Webster, Inc., Springfield, MA, 1985.

[White87] White, S.
A Pragmatic Formal Method for Computer System Definition.
UMI Dissertation Information Service, Ann Arbor, MI, 1987.

[Wood88] Wood, W., Pethia, R., Gold, L., Firth, R.
A Guide to the Assessment of Software Development Methods.
Technical Report CMU/SEI-88-TR-8, Software Engineering Institute, Car-

negie Mellon University, Pittsburgh, PA, April, 1988.

CMU/SEI-89-TR-36 79

80 CMU/SEI.89.TR.36

